Show simple item record

dc.contributor.authorVignali, Sergio
dc.contributor.authorHegglin, Daniel
dc.contributor.authorArlettaz, Raphael
dc.contributor.authorBraunisch, Veronika
dc.date.accessioned2019-01-09T21:31:21Z
dc.date.available2019-01-09T21:31:21Z
dc.date.issued2018
dc.identifier.citationVignali, S., Hegglin, D., Arlettaz, R. and Braunisch, V. (2018). Age and season-related habitat selection patterns of the bearded vulture (Gypaetus barbatus) in the Swiss Alps: a basis for predicting conflict-zones with wind energy construction. 5th European Congress of Conservation Biology. doi: 10.17011/conference/eccb2018/107368
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/61857
dc.description.abstractThe recent increase of wind energy use in Central Europe incurs potential impacts on wildlife. Large soaring raptors, like the bearded vulture, are particularly exposed to collision risk with wind turbines as they sometimes converge in selecting fairly similar combinations of landscape and wind conditions. Considerable efforts and resources have been invested to re-instate the species in the European Alps. There exists a risk, however, that this success will be jeopardized by the sprawl of the wind parks across the alpine massif. We used a maximum entropy modelling approach to predict the potential distribution of the bearded vulture across the Swiss Alpine range using presence-only data. We adopted a stepwise fashion to tune model complexity by varying feature combinations and regularization intensity, selecting the settings that provided the most parsimonious model. We identified and ranked the environmental variables most relevant for the species and tested for differences in ecological requirements between two different age classes (adults and juveniles) in both the cold and the warm season separately. The resulting models had a high accuracy in predicting habitat suitability (mean AUC across 5-folds cross validation ≥ 0.81) in each season for both age classes. Adults and juveniles showed different seasonal habitat selection patterns: whereas for juveniles the most important environmental variable was food availability, particularly ibex density (relative contribution: 40.9% in summer and 25.9% in winter), for adults climatic conditions were more important (altitude with 24.9% contribution in summer and average precipitation with 30.6% contribution in winter). When considering both age classes 67% of the Swiss Alpine range offered suitable habitat for the species, with range shifts between the cold and warm season. This analysis provides a first, broad-scale overview of the species distribution across the Swiss Alps and thus areas of potential conflict with wind energy construction. We will now further investigate flight altitudes and movement patterns at a fine spatial scale in order to identify the sites bearded vultures use most intensively at risky flight heights, i.e. within the rotor-swept area. The results will be integrated into a planning tool that will help avoiding conflicts between wind energy construction and vulture conservation.
dc.format.mimetypetext/html
dc.language.isoeng
dc.publisherOpen Science Centre, University of Jyväskylä
dc.relation.urihttps://peerageofscience.org/conference/eccb2018/107368/
dc.rightsCC BY 4.0
dc.titleAge and season-related habitat selection patterns of the bearded vulture (Gypaetus barbatus) in the Swiss Alps: a basis for predicting conflict-zones with wind energy construction
dc.typeArticle
dc.type.urihttp://purl.org/eprint/type/ConferenceItem
dc.identifier.doi10.17011/conference/eccb2018/107368
dc.type.coarconference paper not in proceedings
dc.description.reviewstatuspeerReviewed
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2018
dc.rights.accesslevelopenAccess
dc.type.publicationconferenceObject
dc.relation.conferenceECCB2018: 5th European Congress of Conservation Biology. 12th - 15th of June 2018, Jyväskylä, Finland
dc.format.contentfulltext
dc.rights.urlhttp://creativecommons.org/licenses/by/4.0/


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • ECCB 2018 [712]
    5th European Congress of Conservation Biology. 12th - 15th of June 2018, Jyväskylä, Finland

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0