Show simple item record

dc.contributor.authorBrander, Tommi
dc.contributor.authorIlmavirta, Joonas
dc.contributor.authorKar, Manas
dc.date.accessioned2018-12-21T06:32:25Z
dc.date.available2018-12-21T06:32:25Z
dc.date.issued2018
dc.identifier.citationBrander, T., Ilmavirta, J., & Kar, M. (2018). Superconductive and insulating inclusions for linear and non-linear conductivity equations. <i>Inverse Problems and Imaging</i>, <i>12</i>(1), 91-123. <a href="https://doi.org/10.3934/ipi.2018004" target="_blank">https://doi.org/10.3934/ipi.2018004</a>
dc.identifier.otherCONVID_27844129
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60775
dc.description.abstractWe detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to also prove similar results when the underlying equation is the quasilinear p-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation div(σ|∇u| p−2∇u) = 0 where the measurable conductivity σ : Ω → [0, ∞] is zero or infinity in large sets and 1 < p < ∞.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.ispartofseriesInverse Problems and Imaging
dc.rightsIn Copyright
dc.subject.otherp-harmonic functions
dc.subject.otherCalderón problem
dc.subject.otherinverse boundary value problem
dc.subject.otherenclosure method
dc.subject.otherprobe method
dc.titleSuperconductive and insulating inclusions for linear and non-linear conductivity equations
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201812175155
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-12-17T10:15:18Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange91-123
dc.relation.issn1930-8337
dc.relation.numberinseries1
dc.relation.volume12
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 American Institute of Mathematical Sciences.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoinkluusio
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18355
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.3934/ipi.2018004
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright