Tunnel junction thermometry on three-dimensional phononic crystals

Abstract
Tässä työssä on tutkittu kolmiulotteisia periodisia nanorakenteita, tarkemmin sanottuna fononikiteitä. Fononikiteet voivat muokata kiteessä liikkuvia värähtelyitä, eli ääntä ja lämpöä, samaan tapaan kuin fotonikiteet vaikuttavat valoon. Riippuen kiteen rakenteesta ja materiaaleista, jotkin taajuudet voivat kulkeutua paremmin tai huonommin, tai jotkin niistä voivat olla täysin kiellettyjä kiteen sisällä. Jälkimmäistä tapausta kutsutaan energia-aukoksi, sillä fononeilla ei voi olla kyseisiä energioita. Fononikiteitä voidaan soveltaa esimerkiksi hyvän tai huonon lämmönjohtavuuden saavuttamiseksi, tiettyjen värähtelytaajuuksien vahvistamiseksi tai poistamiseksi, tai värähtelyjen ohjaamiseksi. Matalissa lämpötiloissa lämmönjohtumisen kontrolloinnin tärkeys korostuu ja termisten fononien taajuusalue on pienempi verrattuna korkeampiin lämpötiloihin, joten tässä työssä ollaankin keskitytty matalissa lämpötiloissa havaittaviin efekteihin. Tämä asettaa näytteen periodin nano-mikrometrialueelle ja lämmönjohtumiseen käytettävän mittasysteemin tulisi olla mataliin lämpötiloihin soveltuva. Mittauksissa nanovalmistetut tunneliliitokset toimisivat lokaalina lämmittimenä ja lämpömittarina, joita voitaisiin käyttää kiteen ominaisuuksien tutkimiseen. Tunneliliitoksien herkkä lämpötilakäyttäytyminen on hyvin tunnettu ilmiö ja niitä ollaan käytetty paljon esimerkiksi kalvojen tutkimuksessa. Uutena haasteena kuitenkin on, miten kyseisten herkkien rakenteiden valmistaminen luonnistuu kolmiulotteisen pinnan päälle. Kaksiulotteisten fononikiteiden osalta on jo tehty huomattavia edistysaskelia, joten tässä työssä on keskitytty vain kolmiulotteisten kiteiden valmistamiseen valitulla menetelmällä. Valmistusprosessissa on yhdistetty useita aiemmin tutkittuja menetelmiä. Ensin kiteelle tehtiin negatiivisesta fotoresististä sen sijaintia ja kokoa rajoittava rakenne UV-litografian avulla puhdistetun piipalan päälle. Itse kide valmistettiin itsejärjestyvyyttä hyödyntäen kolloidikiteytyksellä polystyreenipalloista, joiden halkaisija oli satojen nanometrien luokkaa. Kiteytysprosessissa havaittiin, että polystyreenipallot hakeutuvat mieluiten niille varattuihin kohtiin ja resistin pinta jää useimmiten hyvinkin puhtaaksi, mikä mahdollistaa metalloinnin tekemisen näytteen päälle. Metallisten liitosten tekemistä varten näytteen päälle levitettiin uusi, myöhemmin poistettava resistikerros, mihin valotettiin laser-litografialla haluttu kuvio. Kuvioidun resistin ja kahden kulman höyrystyksen avulla pyrittiin valmistamaan pari SINIS tunneliliitoksia. Liitoksessa alumiini toimi suprajohteena (S) ja kupari normaalimetallina (N), ja höyrystyksien välissä alumiinin pintaan muodostettu alumiinioksidi toimi eristeenä (I). Höyrystyksistä havaittiin, että johtimet onnistuivat suoraan kiteen päälle, mikäli ne olivat tarpeeksi leveitä ja jos metallia höyrystettiin tarpeeksi paksulti. Matalissa lämpötiloissa suoritetut mittaukset vahvistivat valmistetut metalloinnit tunneliliitoksiksi niiden tunnusomaisten virta-jännite-käyrien perusteella. Liitokset olisivat siis soveltuvia käytettäviksi lämpötilan mittaamiseen. Ensimmäisissä mittauksissa havaittiin kuitenkin myös poikkeuksellista käyttäytymistä, minkä lähteitä ei valitettavasti vielä ymmärretä. Efektiä ei kuitenkaan saatu toistettua toisissa mittauksissa, mitkä puolestaan noudattivat teoriaa huomattavan hyvin koko jännitealueella. Lämmönjohtumismittauksia ei valitettavasti ehditty vielä tehdä, mutta kaikki välineet sitä varten on nyt toteutettavissa. Myös mahdollisuuksia referenssinäytteen valmistamiseksi on tutkittu.
Main Author
Format
Theses Master thesis
Published
2018
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201812205271Käytä tätä linkitykseen.
Language
English
License
In CopyrightOpen Access

Share