Follow-up data improve the estimation of the prevalence of heavy alcohol consumption
Kopra, J., Mäkelä, P., Tolonen, H., Jousilahti, P., & Karvanen, J. (2018). Follow-up data improve the estimation of the prevalence of heavy alcohol consumption. Alcohol and Alcoholism, 53(5), 586-596. https://doi.org/10.1093/alcalc/agy019
Julkaistu sarjassa
Alcohol and AlcoholismPäivämäärä
2018Tekijänoikeudet
© The Author(s) 2018. Medical Council on Alcohol and Oxford University Press.
Aims. We aim to adjust for potential non-participation bias in the prevalence of heavy alcohol consumption.
Methods. Population survey data from Finnish health examination surveys conducted in 1987–2007 were linked to the administrative registers for mortality and morbidity follow-up until end of 2014. Utilising these data, available for both participants and non-participants, we model the association between heavy alcohol consumption and alcohol-related disease diagnoses.
Results. Our results show that the estimated prevalence of heavy alcohol consumption is on average of 1.5 times higher for men and 1.8 times higher for women than what was obtained from participants only (complete case analysis). The magnitude of the difference in the mean estimates by year varies from 0 to 9 percentage points for men and from 0 to 2 percentage points for women.
Conclusion. The proposed approach improves the prevalence estimation but requires follow-up data on non-participants and Bayesian modelling.
...
Julkaisija
Oxford University PressISSN Hae Julkaisufoorumista
0735-0414Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27974703
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Profilointi, SALisätietoja rahoituksesta
This work was supported by the Finnish Foundation for Alcohol Studies and Academy of Finland [grant numbers 266251 and 311877].Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Adjusting for selective non-participation with re-contact data in the FINRISK 2012 survey
Kopra, Juho; Härkänen, Tommi; Tolonen, Hanna; Jousilahti, Pekka; Kuulasmaa, Kari; Reinikainen, Jaakko; Karvanen, Juha (Sage, 2018)Aims: A common objective of epidemiological surveys is to provide population-level estimates of health indicators. Survey results tend to be biased under selective non-participation. One approach to bias reduction is ... -
Non-participation modestly increased with distance to the examination clinic among adults in Finnish health examination surveys
Reinikainen, Jaakko; Saarsalmi, Perttu; Härkänen, Tommi; Jousilahti, Pekka; Karvanen, Juha; Männistö, Satu; Tolonen, Hanna (Sage, 2018)Aims: Health examinaton surveys (HES) provide important informaton about populaton health and health related factors, but declining partcipaton rates threaten the representatveness of collected data. It is hard to conduct ... -
A checklist to assess the quality of survey studies in psychology
Protogerou, Cleo; Hagger, Martin S. (Elsevier, 2020)Study quality is emerging as an essential component of evidence syntheses and allows practitioners and policymakers to make informed decisions based on the quality of the evidence reviewed. Study quality is typically ... -
Draamakasvatus opettajan työvälineenä peruskoulun alaluokilla : laadullinen survey-tutkimus luokanopettajien draamakasvatuksen näkemyksistä ja käytänteistä
Herttua, Marika; Viitala, Anna (2003) -
Researchers’ Concerns on Artificial Intelligence Ethics : Results from a Scenario-Based Survey
Jantunen, Marianna; Meyes, Richard; Kurchyna, Veronika; Meisen, Tobias; Abrahamsson, Pekka; Mohanani, Rahul (ACM, 2024)The ethical impacts of Artificial Intelligence (AI) are causing concern in many areas of AI research and development. The implementation of AI ethics is still, in many ways, a work in progress, but various initiatives are ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.