Näytä suppeat kuvailutiedot

dc.contributor.advisorVähäkangas, Antti
dc.contributor.advisorTuominen, Heli
dc.contributor.authorKullaa, Hilla
dc.date.accessioned2018-12-07T06:47:31Z
dc.date.available2018-12-07T06:47:31Z
dc.date.issued2018
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60515
dc.description.abstractTässä työssä tutustutaan kahteen Weierstrassin tulokseen. Karl Wilhelm Theodor Weierstrass oli saksalainen matemaatikko (1815-1897). Monelle Weierstrassin nimi on tuttu Bolzano-Weierstrassin lauseesta tai Weierstrassin M-testistä. Hän myös muotoili (ε, δ)määritelmän jatkuvuudelle. Tässä tutkielmassa keskitytään kuitenkin kahteen approksimaatioteorian tulokseen. Näiden kahden Weierstrassin tuloksen voidaan ajatella olevan approksimaatioteorian klassisia perustuloksia. Ensimmäinen tulos on vuodelta 1872. Se on Weierstrassin esimerkki jatkuvasta ei missään pisteessä derivoituvasta funktiosta. Käyttämällä funktiosarjoja Weierstrass konstruoi funktion, joka on jatkuva, mutta ei missään pisteessä derivoituva. Tätä kutsutaan Weierstrassin funktioksi. Jatkuvien, ei missään pisteessä derivoituvien funktioiden löytyminen mahdollisti monen sovelluksen syntymisen kuten Brownin liike, fraktaalit ja kaaosteoria. Toinen tulos on vuodelta 1885. Kyseessä on Weierstrassin approksimaatiolause. Lauseen mukaan jokaista jatkuvaa funktiota reaalilukujen joukossa voidaan approksimoida mielivaltaisen tarkasti sup-normissa polynomeja käyttäen. Tutkielmassa lähdetään liikkeelle määrittelemällä aputuloksia ja käymällä läpi työssä käytettäviä merkintöjä. Työ etenee funktiosarjojen ja potenssisarjojen käsittelyllä. Tällöin esitellään ja todistetaan myös Raaben testi, joka on sarjan suppenemistesti. Sen avulla pystytään tutkimaan suppeneeko potenssisarja suppenemisvälinsä päätepisteissä. Raaben testiä tarvitaan Weiertrassin approksimaatiolauseen todistamisessa. Työssä todistus tehdään kahdella eri tavalla. Ensimmäinen todistus tehdään Lebesguen tavalla ja toinen niin sanotun konvoluutioapproksimaation avulla.fi
dc.format.extent32
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.subject.otherapproksimaatiolause
dc.subject.otherei missään derivoituva funktio
dc.subject.otherRaaben testi
dc.subject.otherWeierstrass
dc.titleWeierstrassin lause ja muita approksimaatiotuloksia
dc.identifier.urnURN:NBN:fi:jyu-201812075022
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysomatematiikka
dc.subject.ysofunktiot
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot