Weierstrassin lause ja muita approksimaatiotuloksia
Authors
Date
2018Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tässä työssä tutustutaan kahteen Weierstrassin tulokseen. Karl Wilhelm Theodor Weierstrass oli saksalainen matemaatikko (1815-1897). Monelle Weierstrassin nimi on tuttu Bolzano-Weierstrassin lauseesta tai Weierstrassin M-testistä. Hän myös muotoili (ε, δ)määritelmän jatkuvuudelle. Tässä tutkielmassa keskitytään kuitenkin kahteen approksimaatioteorian tulokseen. Näiden kahden Weierstrassin tuloksen voidaan ajatella olevan approksimaatioteorian klassisia perustuloksia.
Ensimmäinen tulos on vuodelta 1872. Se on Weierstrassin esimerkki jatkuvasta ei missään pisteessä derivoituvasta funktiosta. Käyttämällä funktiosarjoja Weierstrass konstruoi funktion, joka on jatkuva, mutta ei missään pisteessä derivoituva. Tätä kutsutaan Weierstrassin funktioksi. Jatkuvien, ei missään pisteessä derivoituvien funktioiden löytyminen mahdollisti monen sovelluksen syntymisen kuten Brownin liike, fraktaalit ja kaaosteoria.
Toinen tulos on vuodelta 1885. Kyseessä on Weierstrassin approksimaatiolause. Lauseen mukaan jokaista jatkuvaa funktiota reaalilukujen joukossa voidaan approksimoida mielivaltaisen tarkasti sup-normissa polynomeja käyttäen.
Tutkielmassa lähdetään liikkeelle määrittelemällä aputuloksia ja käymällä läpi työssä käytettäviä merkintöjä. Työ etenee funktiosarjojen ja potenssisarjojen käsittelyllä. Tällöin esitellään ja todistetaan myös Raaben testi, joka on sarjan suppenemistesti. Sen avulla pystytään tutkimaan suppeneeko potenssisarja suppenemisvälinsä päätepisteissä. Raaben testiä tarvitaan Weiertrassin approksimaatiolauseen todistamisessa. Työssä todistus tehdään kahdella eri tavalla. Ensimmäinen todistus tehdään Lebesguen tavalla ja toinen niin sanotun konvoluutioapproksimaation avulla.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29033]
Related items
Showing items with similar title or keywords.
-
Tapaustutkimus funktion käsitteen oppimisesta tutkivan matematiikan keinoin
Hiltunen, Jenna (2013) -
Harmoniset funktiot kompleksialueessa ja konformikuvaukset
Karttunen, Hanna-Kaisa (2014)Tämän tutkielman tarkoituksena on syventää tietoja kompleksianalyysistä tutustumalla harmonisiin funktioihin ja konformikuvauksiin. Funktioita, jotka toteuttavat Laplacen yhtälön, kutsutaan harmonisiksi funktioiksi. ... -
Eulerin summia
Kaskela, Kai (2014)Tämän tutkielman tarkoituksena on tarkastella menetelmiä joilla voidaan laskea niin kutsuttuja Eulerin summia. Eulerin summia ovat Riemannin zeeta-funktion arvoja parillisissa ja positiivisissa kokonaislukupisteissä. Vaikka ... -
Picardin lauseen todistaminen Harnackin epäyhtälön avulla
Kauppinen, Jussi (2020)Charles Emile Picardin mukaan nimetty Picardin lause ottaa kantaa kompleksisesti differentioituvien eli analyyttisten funktioiden käyttäytymiseen. Kyseinen lause on tutkielman päätulos. Tarkalleen lauseessa väitetään, että ... -
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ...