Register data in sample allocations for small-area estimation
Keto, M., Hakanen, J., & Pahkinen, E. (2018). Register data in sample allocations for small-area estimation. Mathematical Population Studies, 25(4), 184-214. https://doi.org/10.1080/08898480.2018.1437318
Julkaistu sarjassa
Mathematical Population StudiesPäivämäärä
2018Tekijänoikeudet
© 2018 Taylor & Francis Group, LLC.
2018:1 | 2020:68 | 2021:82 | 2022:42 | 2023:80 | 2024:88 | 2025:8
The inadequate control of sample sizes in surveys using stratified sampling and area estimation may occur when the overall sample size is small or auxiliary information is insufficiently used. Very small sample sizes are possible for some areas. The proposed allocation based on multi-objective optimization uses a small-area model and estimation method and semi-collected empirical data annually collected empirical data. The assessment of its performance at the area and at the population levels is based on design-based sample simulations. Five previously developed allocations serve as references. The model-based estimator is more accurate than the design-based Horvitz–Thompson estimator and the model-assisted regression estimator. Two trade-off issues are between accuracy and bias and between the area- and the population-level qualities of estimates. If the survey uses model-based estimation, the sampling design should incorporate the underlying model and the estimation method.
Julkaisija
Taylor & Francis Inc.ISSN Hae Julkaisufoorumista
0889-8480Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28072554
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Optimal sample allocation conditioned on a small area model, estimator, and auxiliary data
Keto, Mauno (University of Jyväskylä, 2018)We have studied optimal sample allocation, associated with small area estimation, when the objective is to obtain as accurate estimates as possible, for the population and for the subpopulations, called as areas here. ... -
Decision making in multiobjective optimization problems under uncertainty : balancing between robustness and quality
Zhou-Kangas, Yue; Miettinen, Kaisa (Springer, 2019)As an emerging research field, multiobjective robust optimization employs minmax robustness as the most commonly used concept. Light robustness is a concept in which a parameter, tolerable degradations, can be used to ... -
NAUTILUS Navigator : free search interactive multiobjective optimization without trading-off
Ruiz, Ana B.; Ruiz, Francisco; Miettinen, Kaisa; Delgado-Antequera, Laura; Ojalehto, Vesa (Springer US, 2019)We propose a novel combination of an interactive multiobjective navigation method and a trade-off free way of asking and presenting preference information. The NAUTILUS Navigator is a method that enables the decision maker ... -
Group decision making in multiobjective optimization : a systematic literature review
Pajasmaa, Juuso (2023)Tässä tutkielmassa suoritetaan systemaattinen kirjallisuuskatsaus ryhmäpäätöksenteon ja monitavoiteoptimoinnin yhdistelmälle. Kirjallisuuskatsaus sisältää perehdytyksen sekä monitavoiteoptimointiin, että ryhmäpäätöksentekoon ... -
Data-driven interactive multiobjective optimization using cluster based surrogate in discrete decision space
Malmberg, Jose (2018)Tutkielma esittää klusteripohjaisen sijaismallin diskreetin päätöksentekoavaruuden dimension pienentämiseksi ja lineaaristen kokonaislukuoptimointitehtävien yksinkertaistamiseksi. Sijaismalli on suunnattu erityisesti ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.