Show simple item record

dc.contributor.authorZhang, Qing
dc.contributor.authorHu, Guoqiang
dc.contributor.authorTian, Lili
dc.contributor.authorRistaniemi, Tapani
dc.contributor.authorWang, Huili
dc.contributor.authorChen, Hongjun
dc.contributor.authorWu, Jianlin
dc.contributor.authorCong, Fengyu
dc.date.accessioned2018-11-23T12:51:14Z
dc.date.available2019-03-21T22:35:35Z
dc.date.issued2018
dc.identifier.citationZhang, Q., Hu, G., Tian, L., Ristaniemi, T., Wang, H., Chen, H., Wu, J., & Cong, F. (2018). Examining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging. <i>Cognitive Neurodynamics</i>, <i>12</i>(5), 461-470. <a href="https://doi.org/10.1007/s11571-018-9484-2" target="_blank">https://doi.org/10.1007/s11571-018-9484-2</a>
dc.identifier.otherCONVID_27960846
dc.identifier.otherTUTKAID_77128
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/60313
dc.description.abstractIndependent component analysis (ICA) on group-level voxel-based morphometry (VBM) produces the coefficient matrix and the component matrix. The former contains variability among multiple subjects for further statistical analysis, and the latter reveals spatial maps common for all subjects. ICA algorithms converge to local optimization points in practice and the mostly applied stability investigation approach examines the stability of the extracted components. We found that the practically stable components do not guarantee to produce the practically stable coefficients of ICA decomposition for the further statistical analysis. Consequently, we proposed a novel approach including two steps: 1), the stability index for the coefficient matrix and the stability index for the component matrix were examined, respectively; 2) the two indices were multiplied to analyze the stability of ICA decomposition. The proposed approach was used to study the sMRI data of Type II diabetes mellitus group (DM) and the healthy control group (HC). Group differences in VBM were found in the superior temporal gyrus. Besides, it was revealed that the VBMs of the region of the HC group were significantly correlated with Montreal Cognitive Assessment (MoCA) describing the level of cognitive disorder. In contrast to the widely applied approach to investigating the stability of the extracted components for ICA decomposition, we proposed to examine the stability of ICA decomposition by fusion the stability of both coefficient matrix and the component matrix. Therefore, the proposed approach can examine the stability of ICA decomposition sufficiently.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Netherlands
dc.relation.ispartofseriesCognitive Neurodynamics
dc.rightsIn Copyright
dc.subject.othermagneettitutkimus
dc.subject.othervoxel-based morphometry
dc.subject.otherback-projection
dc.subject.otherMontreal cognitive assessment
dc.subject.otherstability
dc.subject.othercoefficient matrix
dc.subject.othercomponent matrix
dc.titleExamining stability of independent component analysis based on coefficient and component matrices for voxel-based morphometry of structural magnetic resonance imaging
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201811224841
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiainePsykologiafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiainePsychologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-11-22T13:15:19Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange461-470
dc.relation.issn1871-4080
dc.relation.numberinseries5
dc.relation.volume12
dc.type.versionacceptedVersion
dc.rights.copyright© Springer Science+Business Media B.V., part of Springer Nature 2018
dc.rights.accesslevelopenAccessfi
dc.subject.ysosignaalianalyysi
dc.subject.ysoaivokuori
dc.subject.ysodiabetes
dc.subject.ysoriippumattomien komponenttien analyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p7039
jyx.subject.urihttp://www.yso.fi/onto/yso/p8304
jyx.subject.urihttp://www.yso.fi/onto/yso/p38529
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s11571-018-9484-2
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright