Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation
Denicol, G. S., Huang, X.-G., Molnár, E., Monteiro, G. M., Niemi, H., Noronha, J., Rischke, D. H., & Wang, Q. (2018). Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation. Physical Review D, 98(7), Article 076009. https://doi.org/10.1103/physrevd.98.076009
Published in
Physical Review DAuthors
Date
2018Copyright
© 2018 American Physical Society
We derive the equations of motion of relativistic, nonresistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be nonresistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equations, reproducing previous results for the structure of the first-order transport coefficients. Finally, we truncate the system of equations for the irreducible moments using the 14-moment approximation, deriving the equations of motion of relativistic, nonresistive, second-order dissipative magnetohydrodynamics. We also give expressions for the new transport coefficients appearing due to the coupling of the magnetic field to the dissipative quantities.
...
Publisher
American Physical SocietyISSN Search the Publication Forum
2470-0010Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28681523
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
The authors would like to thank T. Lappi for pointing out the similarity of the reduction of dissipative transport coefficients in a magnetic field observed here to the mechanism suggested in Ref. [40]. G. S. D. greatly acknowledges the warm hospitality of the Department of Physics of Goethe University, where part of this work was done. E. M. and D. H. R. greatly acknowledge the warm hospitality of the Department of Physics of the University of Jyväskylä, where part of this work was done. This work was supported by the Collaborative Research Center CRC-TR 211 “Strong-interaction matter under extreme conditions” funded by DFG. G. S. D. and J. N. thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. X. G. H. is supported by the Young 1000 Talents Program of China, NSFC with Grants No. 11535012 and No. 11675041. E. M. is supported by the Bundesministerium für Bildung und Forschung (BMBF) and by the Research Council of Norway, (NFR) Project No. 255253/F50. H. N. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 655285 and by the Academy of Finland, Project No. 297058. J. N. and G. M. M. thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grants No. 2015/50266-2 (2017/05685-2) and No. 2016/13517-0, respectively, for financial support. D. H. R. is partially supported by the High-end Foreign Experts Project No. GDW20167100136 of the State Administration of Foreign Experts Affairs of China. ...License
Related items
Showing items with similar title or keywords.
-
Exploring the applicability of dissipative fluid dynamics to small systems by comparison to the Boltzmann equation
Gallmeister, K.; Niemi, Harri; Greiner, C.; Rischke, D. H. (American Physical Society, 2018)Background: Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable ... -
Multicomponent relativistic dissipative fluid dynamics from the Boltzmann equation
Fotakis, Jan A.; Molnár, Etele; Niemi, Harri; Greiner, Carsten; Rischke, Dirk H. (American Physical Society (APS), 2022)We derive multicomponent relativistic second-order dissipative fluid dynamics from the Boltzmann equations for a reactive mixture of Nspec particle species with Nq intrinsic quantum numbers (e.g., electric charge, baryon ... -
Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation
Denicol, Gabriel S.; Molnár, Etele; Niemi, Harri; Rischke, Dirk H. (American Physical Society, 2019)We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, ... -
Application of novel relaxation time approximation for the Boltzmann equation in relativistic fluid dynamics
Piipponen, Mika (2024)Ultrarelativistic heavy-ion collisions are modelled with relativistic fluid dynamics. Since quark-gluon plasma formed in collider experiments cannot be directly measured, the investigation of the substance is heavily based ... -
An Inverse Problem for the Relativistic Boltzmann Equation
Balehowsky, Tracey; Kujanpää, Antti; Lassas, Matti; Liimatainen, Tony (Springer, 2022)We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in a neighbourhood V⊂M of a timelike path μ that connects ...