Pituusavaruudet ja geodeesiset avaruudet
Tutkielma käsittelee polun pituutta metrisessä avaruudessa. Polun pituuden kautta määritellään käsitteet pituusavaruus ja geodeesinen avaruus. Työn päätulos on Hopfin ja Rinowin lause: lokaalisti kompaktissa täydellisessä pituusavaruudessa kaikki suljetut ja rajoitetut joukot ovat kompakteja, lisäksi mainituin ehdoin varustettu avaruus on geodeesinen.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29740]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Vektoriavaruudet ja niiden representaatiot
Hietala, Roope (2022)Tässä työssä tutkitaan erilaisia representaatioita vektoriavaruuksille sekä Hilbertin avaruuden rakennetta. Hilbertin avaruudet ovat täydellisiä sisätuloavaruuksia, jotka ovat yleistys euklidiselle avaruudelle. Tavoitteena ... -
Separaatioaksioomat ja jatkuvien kuvausten laajentaminen
Timonen, Joel (2023)Tässä matematiikan Pro Gradu -tutkielmassa todistetaan McShanen ja Tietzen jatkolauseet sekä Urysonin lemma. Ensimmäinen tulos liittyy metrisiin avaruuksiin ja kaksi jälkimmäistä topologiaan. McShanen jatkolause kertoo, ... -
Käyrän pituus metrisessä avaruudessa
Männistö, Hanna (2014) -
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ... -
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.