Impact loading history modulates hip fracture load and location : A finite element simulation study of the proximal femur in female athletes
Abstract
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11–26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7–10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.
Main Authors
Format
Articles
Research article
Published
2018
Series
Subjects
Publication in research information system
Publisher
Pergamon Press
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201807093487Use this for linking
Review status
Peer reviewed
ISSN
0021-9290
DOI
https://doi.org/10.1016/j.jbiomech.2018.05.037
Language
English
Published in
Journal of Biomechanics
Citation
- Abe, S., Narra, N., Nikander, R., Hyttinen, J., Kouhia, R., & Sievänen, H. (2018). Impact loading history modulates hip fracture load and location : A finite element simulation study of the proximal femur in female athletes. Journal of Biomechanics, 76, 136-143. https://doi.org/10.1016/j.jbiomech.2018.05.037
Copyright© 2018 Elsevier Ltd.