Testing microscopically derived descriptions of nuclear collectivity : Coulomb excitation of 22Mg
Henderson, J., Hackman, G., Ruotsalainen, P., Stroberg, S.R., Launey, K.D., Holt, J.D., Ali, F.A., Bernier, N., Bentley, M.A., Bowry, M., Caballero-Folch, R., Evitts, L.J., Frederick, R., Garnsworthy, A.B., Garrett, P.E., Jigmeddorj, B., Kilic, A.I., Lassen, J., Measures, J., . . . Wu, C.Y. (2018). Testing microscopically derived descriptions of nuclear collectivity : Coulomb excitation of 22Mg. Physics Letters B, 782, 468-473. https://doi.org/10.1016/j.physletb.2018.05.064
Julkaistu sarjassa
Physics Letters BTekijät
Park, J. |
Päivämäärä
2018Tekijänoikeudet
© 2018 The Authors. Published by Elsevier B.V. Funded by
SCOAP3.
2018:8 | 2019:64 | 2020:60 | 2021:49 | 2022:34 | 2023:46 | 2024:44 | 2025:1
Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle–hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new values while in-medium similarity-renormalization-group calculations consistently underpredict the absolute strength, with the missing strength found to have both isoscalar and isovector components. The discrepancy between two microscopic models demonstrates the sensitivity of E2 strength to the choice of many-body approximation employed.
Julkaisija
Elsevier B.V.ISSN Hae Julkaisufoorumista
0370-2693Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28083943
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
de Groote, R. P.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Cocolios, T. E.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedorov, D. V.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Holt, J. D.; Koszorús, Á.; Lynch, K. M.; Miyagi, T.; Nazarewicz, W.; Neyens, G.; Reinhard, P.-G.; Rothe, S.; Stroke, H. H.; Vernon, A. R.; Wendt, K. D. A.; Wilkins, S. G.; Xu, Z. Y.; Yang, X. F. (Nature Publishing Group, 2020)Nuclear charge radii globally scale with atomic mass number A as A1∕3, and isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. This odd-even staggering, ubiquitous ... -
High-Statistics Sub-Barrier Coulomb Excitation of 106,108,110Sn
Park, J.; Knyazev, A.; Rickert, E.; Golubev, P.; Cederkäll, J.; Andreyev, A. N.; de Angelis, G.; Arnswald, K.; Barber, L.; Berger, C.; Berner, C.; Berry, T.; Borge, M. J. G.; Boukhari, A.; Cox, D.; Cubiss, J.; Cullen, D. M.; Ovejas, J. Díaz; Fahlander, C.; Gaffney, L. P.; Gawlik, A.; Gernhäuser, R.; Görgen, A.; Habermann, T.; Henrich, C.; Illana, A.; Iwanicki, J.; Johansen, T. W.; Konki, J.; Kröll, T.; Nara, Singh B. S.; Rainovski, G.; Raison, C.; Reiter, P.; Rosiak, D.; Saha, S.; Saxena, M.; Schilling, M.; Seidlitz, M.; Snäll, J.; Stahl, C.; Stryjczyk, M.; Tengblad, O.; Tveten, G. M.; Valiente-Dobón, J. J.; Van Duppen, P.; Viñals, S.; Warr, N.; Welker, A.; Werner, L.; De Witte, H.; Zidarova, R. (Physical Society of Japan, 2020)A Coulomb excitation campaign on 106,108,110Sn at 4.4–4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ... -
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive 222Ra and 228Ra Beams
Butler, P. A.; Gaffney, L. P.; Spagnoletti, P.; Abrahams, K.; Bowry, M.; Cederkäll, J.; de Angelis, G.; De Witte, H.; Garrett, P. E.; Goldkuhle, A.; Henrich, C.; Illana, A.; Johnston, K.; Joss, D. T.; Keatings, J. M.; Kelly, N. A.; Komorowska, M.; Konki, J.; Kröll, T.; Lozano, M.; Nara Singh, B. S.; O'Donnell, D.; Ojala, J.; Page, R. D.; Pedersen, L. G.; Raison, C.; Reiter, P.; Rodriguez, J. A.; Rosiak, D.; Rothe, S.; Scheck, M.; Seidlitz, M.; Shneidman, T. M.; Siebeck, B.; Sinclair, J.; Smith, J. F.; Stryjczyk, M.; Van Duppen, P.; Vinals, S.; Virtanen, V.; Warr, N.; Wrzosek-Lipska, K.; Zielinska, M. (American Physical Society, 2020)There is sparse direct experimental evidence that atomic nuclei can exhibit stable “pear” shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, ... -
β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation
Majola, S. N. T.; Shi, Z.; Song, B. Y.; Li, Z. P.; Zhang, S. Q.; Bark, R. A.; Sharpey-Schafer, J. F.; Aschman, D. G.; Bvumbi, S. P.; Bucher, T. D.; Cullen, D. M.; Dinoko, T. S.; Easton, J. E.; Erasmus, N.; Greenlees, P. T.; Hartley, D. J.; Hirvonen, J.; Korichi, A.; Jakobsson, U.; Jones, P.; Jongile, S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Kheswa, B. V.; Khumalo, N. A.; Lawrie, E. A.; Lawrie, J. J.; Lindsay, R.; Madiba, T. E.; Makhathini, L.; Maliage, S. M.; Maqabuka, B.; Malatji, K. L.; Masiteng, P. L.; Mashita, P. I.; Mdletshe, L.; Minkova, A.; Msebi, L.; Mullins, S. M.; Ndayishimye, J.; Negi, D.; Netshiya, A.; Newman, R.; Ntshangase, S. S.; Ntshodu, R.; Nyakó, B. M.; Papka, P.; Peura, P.; Rahkila, P.; Riedinger, L. L.; Riley, M. A.; Roux, D. G.; Ruotsalainen, P.; Saren, J. J.; Scholey, C.; Shirinda, O.; Sithole, M. A.; Sorri, J.; Stankiewicz, M.; Stolze, S.; Timár, J.; Uusitalo, J.; Vymers, P. A.; Wiedeking, M.; Zimba, G. L. (American Physical Society, 2019)A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.