Show simple item record

dc.contributor.authorJuhola, Hanna
dc.contributor.authorPostila, Pekka
dc.contributor.authorRissanen, Sami
dc.contributor.authorLolicato, Fabio
dc.contributor.authorVattulainen, Ilpo
dc.contributor.authorRóg, Tomasz
dc.date.accessioned2018-06-21T08:54:01Z
dc.date.available2019-09-01T21:35:41Z
dc.date.issued2018
dc.identifier.citationJuhola, H., Postila, P., Rissanen, S., Lolicato, F., Vattulainen, I., & Róg, T. (2018). Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. <i>Neuroscience</i>, <i>384</i>, 214-223. <a href="https://doi.org/10.1016/j.neuroscience.2018.05.035" target="_blank">https://doi.org/10.1016/j.neuroscience.2018.05.035</a>
dc.identifier.otherCONVID_28085367
dc.identifier.otherTUTKAID_77810
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58701
dc.description.abstractLipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT–membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT–membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile, the extracellular leaflet is relatively rich in biologically relevant anionic gangliosides such as monosialotetrahexosylganglioside (GM1), yet the role of gangliosides in NT–membrane association is not clear. Here, we explored the role of GM1 in modulating the binding of dopamine and histamine (as amphipathic/cationic NTs) as well as acetylcholine (as a hydrophilic/cationic NT) with the post-synaptic membrane surface. Atomistic molecular dynamics simulations and free energy calculations indicated that GM1 fosters membrane association of histamine and dopamine. For acetylcholine, this effect was not observed. The in silico results suggest that gangliosides form a charge-based vestibule in front of the post-synaptic membrane, attracting amphipathic NTs to the vicinity of the membrane. The results also stress the importance to understand the significance of the structural details of NTs, as exemplified by the GM1–acetylcholine interaction. In a larger context, the NT–membrane adherence, coupled to lateral diffusion in the membrane plane, is proposed to improve neurotransmission efficiency by advancing NT entry into the membrane-embedded ligand-binding sites.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherPergamon Press
dc.relation.ispartofseriesNeuroscience
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherneurotransmitter
dc.subject.otherneurotransmission
dc.subject.othermonosialotetrahexosylganglioside
dc.subject.otherbinding free energy
dc.titleNegatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201806143209
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-06-14T09:15:12Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange214-223
dc.relation.issn0306-4522
dc.relation.numberinseries0
dc.relation.volume384
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.subject.ysovälittäjäaineet
dc.subject.ysoasetyylikoliini
dc.subject.ysodopamiini
dc.subject.ysohistamiini
dc.subject.ysokolesteroli
dc.subject.ysohermosolut
dc.subject.ysosynapsit
dc.subject.ysosolukalvot
dc.subject.ysomolekyylidynamiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p22948
jyx.subject.urihttp://www.yso.fi/onto/yso/p28769
jyx.subject.urihttp://www.yso.fi/onto/yso/p14737
jyx.subject.urihttp://www.yso.fi/onto/yso/p15974
jyx.subject.urihttp://www.yso.fi/onto/yso/p10609
jyx.subject.urihttp://www.yso.fi/onto/yso/p18309
jyx.subject.urihttp://www.yso.fi/onto/yso/p28072
jyx.subject.urihttp://www.yso.fi/onto/yso/p2410
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.neuroscience.2018.05.035
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0