dc.contributor.author | Hänninen, Henri | |
dc.contributor.author | Lappi, Tuomas | |
dc.contributor.author | Paatelainen, Risto | |
dc.date.accessioned | 2018-06-20T11:37:50Z | |
dc.date.available | 2020-07-01T21:35:11Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Hänninen, H., Lappi, T., & Paatelainen, R. (2018). One-loop corrections to light cone wave functions : The dipole picture DIS cross section. <i>Annals of Physics</i>, <i>393</i>, 358-412. <a href="https://doi.org/10.1016/j.aop.2018.04.015" target="_blank">https://doi.org/10.1016/j.aop.2018.04.015</a> | |
dc.identifier.other | CONVID_28018507 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/58669 | |
dc.description.abstract | We develop methods to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark–antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional dimensional regularization, confirming the regularization scheme independence of this cross section. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Inc. | |
dc.relation.ispartofseries | Annals of Physics | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | light-cone perturbation theory | |
dc.subject.other | small-x | |
dc.subject.other | color glass condensate | |
dc.title | One-loop corrections to light cone wave functions : The dipole picture DIS cross section | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201805292879 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2018-05-29T09:15:10Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 358-412 | |
dc.relation.issn | 0003-4916 | |
dc.relation.numberinseries | 0 | |
dc.relation.volume | 393 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2018 Elsevier Inc. All rights reserved. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 681707 | |
dc.relation.grantnumber | 681707 | |
dc.relation.grantnumber | 303756 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/681707/EU//CGCglasmaQGP | |
dc.subject.yso | kvanttifysiikka | |
dc.subject.yso | hiukkasfysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5564 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15576 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.aop.2018.04.015 | |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | European Commission | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | ERC European Research Council, H2020 | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | ERC European Research Council, H2020 | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundinginformation | We thank G. Beuf for numerous discussions and providing his results in [ 30 ] to us already prior to publication. This work has been supported by the Academy of Finland , projects 273464 and 303756 , and by the European Research Council , grants ERC-2015-CoG-681707 and ERC-2016-CoG-725369 . | |
dc.type.okm | A1 | |