Bakteerifytokromipohjaisen optogeneettisen työkalun kloonaus ja testaus
Abstract
Optogenetiikan avulla voidaan kontrolloida tarkasti määriteltyjä solun biologisia toimintoja käyttäen geneettisiä ja optisia menetelmiä. Tämän tutkimuksen tarkoituksena oli kehittää ja testata punaiselle valolle herkkä Deinococcus radiodurans -bakteerin fytokromiin (DrBphP) pohjautuva optogeneettinen työkalu. Ensimmäisenä hypoteesina DrBphP:llä ja sen vasteregulaattorilla (DrRR) on punaisen valon aallonpituudella ohjattavaa nisäkässoluissa havaittavissa olevaa reversiibeliä vuorovaikutusta. Toisena hypoteesina DrBphP monomeeri mutantti (FLmon) voidaan monomerisoida punaisen valon avulla ja jälleen dimerisoida kaukopunaisella valotuksella ja tätä vuorovaikutusta voidaan havainnoida nisäkässoluissa. Kras4B lipidiankkuri (CAAX) tai tumalokalisaatiosignaali (engl. nuclear cap-binding protein subunit 1) kloonattiin DrRR- ja FLmon-inserttien C-terminaaliin. Vuorovaikutusta tutkittiin konfokaalimikroskoopilla kiinnitetyillä ja elävillä soluilla transfektoiduissa HeLa-soluissa. DrBphP-DrRR vuorovaikutus on kvantitatiivisten analyysien perusteella voimakkaampaa pimeässä kuin valotettuna (p = 0,025). FLmon vuorovaikutusta ei pystytty havaitsemaan (p = 0,117). Tutkimuksia on syytä jatkaa tekemällä stabiilit solulinjat. Lisäksi mutaatioiden avulla pimeässä sitoutumista ja siten taustasignaalia voidaan pienentää. Punainen valo pystyy tunkeutumaan syvälle nisäkäskudokseen, joten punaiselle valolle herkkä optogeneettinen systeemi, mahdollistaisi nisäkässolujen biologisten toimintojen tarkan säätelyn noninvasiivisesti.
Optogenetics is a pioneer technique that allows targeted, rapid control of precisely defined events in complex biological systems with the help of genetic and optical methods. Aim of this study is to develop and test a red light switchable Deinococcus radiodurans –bacterial phytochrome-based (DrBphP) optogenetic tool. The hypothesis stands that the interaction of DrBphP and its response regulator (DrRR) in mammalian cells is red light-inducible and reversible. The second hypothesis stands that DrBphP monomer mutant (FLmon) can monomerize with red light illumination and again dimerize with far-red light illumination and this interaction is observable in mammalian cells. Kras4B membrane motif (CAAX) or a nuclear localization signal of nuclear cap-binding protein subunit 1 (NLS) is cloned in to the C-terminus of the DrRR and FLmon inserts. The interactions are studied in transfected HeLa cells using confocal microscopy for both fixed and live cells. Confocal images demonstrate the functionality of translocation signals. DrBphP–DrRR interaction is revealed by confocal images and quantitative analysis shows stronger intensity in dark versus light (p = 0.025). FLmon interaction is not observable by confocal microscope. Future directions are stable cell lines and mutations to lower background signal. Red light can penetrate deep into the mammalian tissue, therefore development of a red light-sensitive bacterial phytochrome-based optogenetic tool would offer noninvasive methods to regulate specific events in mammalian systems.
Optogenetics is a pioneer technique that allows targeted, rapid control of precisely defined events in complex biological systems with the help of genetic and optical methods. Aim of this study is to develop and test a red light switchable Deinococcus radiodurans –bacterial phytochrome-based (DrBphP) optogenetic tool. The hypothesis stands that the interaction of DrBphP and its response regulator (DrRR) in mammalian cells is red light-inducible and reversible. The second hypothesis stands that DrBphP monomer mutant (FLmon) can monomerize with red light illumination and again dimerize with far-red light illumination and this interaction is observable in mammalian cells. Kras4B membrane motif (CAAX) or a nuclear localization signal of nuclear cap-binding protein subunit 1 (NLS) is cloned in to the C-terminus of the DrRR and FLmon inserts. The interactions are studied in transfected HeLa cells using confocal microscopy for both fixed and live cells. Confocal images demonstrate the functionality of translocation signals. DrBphP–DrRR interaction is revealed by confocal images and quantitative analysis shows stronger intensity in dark versus light (p = 0.025). FLmon interaction is not observable by confocal microscope. Future directions are stable cell lines and mutations to lower background signal. Red light can penetrate deep into the mammalian tissue, therefore development of a red light-sensitive bacterial phytochrome-based optogenetic tool would offer noninvasive methods to regulate specific events in mammalian systems.
Main Author
Format
Theses
Master thesis
Published
2018
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201806153227Use this for linking
Language
Finnish
The record contains restricted files. You can request a copy of this thesis here.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
Tekijä ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyväskylän yliopiston kirjaston arkistotyösemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat..