Show simple item record

dc.contributor.authorJauhiainen, Susanne
dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2018-05-21T09:20:36Z
dc.date.available2018-05-21T09:20:36Z
dc.date.issued2017
dc.identifier.citationJauhiainen, S., & Kärkkäinen, T. (2017). A Simple Cluster Validation Index with Maximal Coverage. In <i>ESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 293-298). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-24.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-24.pdf</a>
dc.identifier.otherCONVID_28052216
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/58041
dc.description.abstractClustering is an unsupervised technique to detect general, distinct profiles from a given dataset. Similarly to the existence of various different clustering methods and algorithms, there exists many cluster validation methods and indices to suggest the number of clusters. The purpose of this paper is, firstly, to propose a new, simple internal cluster validation index. The index has a maximal coverage: also one cluster, i.e., lack of division of a dataset into disjoint subsets, can be detected. Secondly, the proposed index is compared to the available indices from five different packages implemented in R or Matlab to assess its utilizability. The comparison also suggests many interesting findings in the available implementations of the existing indices. The experiments and the comparison support the viability of the proposed cluster validation index.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherESANN
dc.relation.ispartofESANN 2017 : Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.urihttps://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-24.pdf
dc.rightsCC BY-NC 4.0
dc.subject.othercluster validation
dc.titleA Simple Cluster Validation Index with Maximal Coverage
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-201805162645
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.date.updated2018-05-16T12:09:29Z
dc.relation.isbn978-2-87587-039-1
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange293-298
dc.type.versionpublishedVersion
dc.rights.copyright© the Authors, 2017.
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC 4.0
Except where otherwise noted, this item's license is described as CC BY-NC 4.0