Heavy quarkonium suppression in a fireball

Abstract
We perform a comprehensive study of the time evolution of heavy-quarkonium states in an expanding hot QCD medium by implementing effective field theory techniques in the framework of open quantum systems. The formalism incorporates quarkonium production and its subsequent evolution in the fireball including quarkonium dissociation and recombination. We consider a fireball with a local temperature that is much smaller than the inverse size of the quarkonium and much larger than its binding energy. The calculation is performed at an accuracy that is leading order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. Within this accuracy, for a smooth variation of the temperature and large times, the evolution equation can be written as a Lindblad equation. We solve the Lindblad equation numerically both for a weakly coupled quark-gluon plasma and a strongly coupled medium. As an application, we compute the nuclear modification factor for the Υ(1S) and Υ(2S) states. We also consider the case of static quarks, which can be solved analytically. Our study fulfills three essential conditions: it conserves the total number of heavy quarks, it accounts for the non-Abelian nature of QCD, and it avoids classical approximations.
Main Authors
Format
Articles Research article
Published
2018
Series
Subjects
Publication in research information system
Publisher
American Physical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201804192129Use this for linking
Review status
Peer reviewed
ISSN
2470-0010
DOI
https://doi.org/10.1103/PhysRevD.97.074009
Language
English
Published in
Physical Review D
Citation
License
Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Akatemiatutkijan tutkimuskulut, SA
Research costs of Academy Research Fellow, AoF
Research Council of Finland
Additional information about funding
The work of N. B. and A. V. was supported by the Deutsche Forschungsgemeinschaft (DFG) Grant No. BR 4058/1-2 “Effective field theories for heavy probes of hot plasma” and by the DFG cluster of excellence “Origin and structure of the universe” (www.universe-cluster.de). The work of M. A. E. was supported by the Academy of Finland, Project No. 303756. J. S. was supported by the CPAN CSD2007-00042 Consolider–Ingenio 2010 program; the FPA2013-43425-P, FPA2013-4657, FPA2016-81114-P and FPA2016-76005-C2-1-P projects (Spain); and the 2014-SGR-104 grant (Catalonia).
Copyright© American Physical Society, 2018. Published in this repository with the kind permission of the publisher.

Share