Show simple item record

dc.contributor.authorLehtonen, Jere
dc.contributor.authorRailo, Jesse
dc.contributor.authorSalo, Mikko
dc.date.accessioned2018-03-22T11:13:26Z
dc.date.available2019-04-01T21:35:43Z
dc.date.issued2018
dc.identifier.citationLehtonen, J., Railo, J., & Salo, M. (2018). Tensor tomography on Cartan-Hadamard manifolds. <i>Inverse Problems</i>, <i>34</i>(4), 044004. <a href="https://doi.org/10.1088/1361-6420/aaaf85" target="_blank">https://doi.org/10.1088/1361-6420/aaaf85</a>
dc.identifier.otherCONVID_27906162
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/57389
dc.description.abstractWe study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions $n \geqslant 3$ and to the case of tensor fields of any order.en
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.ispartofseriesInverse Problems
dc.subject.othertensor tomography
dc.subject.otherCartan-Hadamard manifolds
dc.titleTensor tomography on Cartan-Hadamard manifolds
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201803191758
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2018-03-19T13:15:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange044004
dc.relation.issn0266-5611
dc.relation.numberinseries4
dc.relation.volume34
dc.type.versionacceptedVersion
dc.rights.copyright© 2018 IOP Publishing Ltd. This is a final draft version of an article whose final and definitive form has been published by IOP Publishing Ltd. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber284715 HY
dc.relation.grantnumber307023
dc.relation.grantnumber307023
dc.relation.grantnumber309963
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/307023/EU//InvProbGeomPDE
dc.relation.doi10.1088/1361-6420/aaaf85
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationAll authors were supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research, grant numbers 284715 and 309963), and JL and MS were also partly supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) / ERC Starting Grant agreement no 307023.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record