Jyväskylän yliopisto | JYX-julkaisuarkisto

  • suomi  | Anna palautetta |
    • suomi
    • English
 
  • Kirjaudu
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä aineisto 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • Näytä aineisto
JYX > Opinnäytteet > Väitöskirjat > Näytä aineisto

Statistical methods for adaptive river basin management and monitoring

Thumbnail
Katso/Avaa
4.0Mb

Lataukset:  
Show download detailsHide download details  
Julkaistu sarjassa
Jyväskylä studies in biological and environmental science
Tekijät
Kotamäki, Niina
Päivämäärä
2018
Oppiaine
Ympäristötiede

 
Decision-making at different phases of adaptive river basin management planning rely largely on the information that is gained through environmental monitoring. The aim of this thesis was to develop and test statistical assessment tools presumed to be particularly useful for evaluating existing monitoring designs, converting monitoring data into management information and quantifying uncertainties. River basin scale monitoring was performed using a wireless sensor network and a data quality control system and maintenance effort was assessed. National-scale, traditional monitoring data and linear mixed effect modelling were used to estimate the uncertainty in two status class metrics (total phosphorus, and chlorophyll-a) by quantifying temporal and spatial variance components. The relative sizes of the variance components were then used to determine how to efficiently allocate the monitoring resources. Nutrient and chlorophyll-a statuses were linked to external loading utilizing a large amount of monitoring data and a hierarchical Bayesian approach. This linkage was the basis for developing a practical assessment tool for lake management. To evaluate the network of relationships affecting phytoplankton development between water quality variables, structural equation modelling was used. Model residual and parameter uncertainty, and thus uncertainty in the assessment result, were estimated using probabilistic Bayesian modelling. In general, the results of this study suggest that the used statistical methods appear to be particularly useful for decision-making under an adaptive management framework, as they enabled predictions to be made based on existing monitoring data and have measures of uncertainty associated with the outcomes. The results suggest that the uncertainties often stem from the lack of input data or insufficiently allocated monitoring. Therefore, it should be ensured that information gaps in the nutrient loading values, as well as in other, especially biological variables, are sufficiently covered. ...
Julkaisija
University of Jyväskylä
ISBN
978-951-39-7378-0
ISSN Hae Julkaisufoorumista
1456-9701
Julkaisuun sisältyy osajulkaisuja
  • Artikkeli I: Kotamäki N., Thessler S., Koskiaho J., Hannukkala A.O., Huitu H., Huttula T., Havento J. & Järvenpää M. 2009. Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: evaluation from a data user’s perspective. Sensors 9(4): 2862–2883. DOI: 10.3390/s90402862.
  • Artikkeli II: Kotamäki, N., Järvinen, M., Kauppila, P., Korpinen, S., Lensu, A., Malve, O., Mitikka, S. and Kettunen, J. A practical approach to improve statistical performance of WFD monitoring networks. Manuscript.
  • Artikkeli III: Kotamäki N., Pätynen A., Taskinen A., Huttula T. & Malve O. 2015. Statistical dimensioning of nutrient loading reduction - LLR assessment tool for lake managers. Environmental Management 56: 480–491. DOI: 10.1007/s00267-015-0514-0.
  • Artikkeli IV: Pätynen A., Kotamäki N., Arvola L., Tulonen T. & Malve O. 2015. Causal analysis of phytoplankton development in a small humic lake using structural equation modelling. Inland Waters 5: 231–239. DOI: 10.5268/IW-5.3.736.
  • Artikkeli V: Pätynen A., Kotamäki N. & Malve O. 2013. Alternative approaches to modelling lake ecosystems. Freshwater Reviews 6: 63–74. DOI: 110.1608/FRJ-6.2.704.
Asiasanat
adaptive management Bayesian inference eutrophication monitoring statistical methods uncertainty Water Framework Directive ympäristönhoito vesienhoito vesipolitiikka päätöksenteko valuma-alueet vedenlaatu rehevöityminen monitorointi sensoriverkot tilastomenetelmät bayesilainen menetelmä
URI

http://urn.fi/URN:ISBN:978-951-39-7378-0

Metadata
Näytä kaikki kuvailutiedot
Kokoelmat
  • Väitöskirjat [3033]

Samankaltainen aineisto

Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.

  • Can visualization alleviate dichotomous thinking : Effects of visual representations on the cliff effect 

    Helske, Jouni; Helske, Satu; Cooper, Matthew; Ynnerman, Anders; Besancon, Lonni (IEEE, 2021)
    Common reporting styles for statistical results in scientific articles, such as \pvalues\ and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null ...
  • Improving statistical classification methods and ecological status assessment for river macroinvertebrates 

    Ärje, Johanna (University of Jyväskylä, 2016)
    Aquatic ecosystems are facing a growing number of human-induced stressors and the need to implement more biomonitoring to assess the ecological status of water bodies is eminent. This dissertation aims at providing tools ...
  • The value of perfect and imperfect information in lake monitoring and management 

    Koski, Vilja; Kotamäki, Niina; Hämäläinen, Heikki; Meissner, Kristian; Karvanen, Juha; Kärkkäinen, Salme (Elsevier, 2020)
    Uncertainty in the information obtained through monitoring complicates decision making about aquatic ecosystems management actions. We suggest the value of information (VOI) to assess the profitability of paying for ...
  • Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo 

    Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)
    We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ...
  • Statistical models and inference for spatial point patterns with intensity-dependent marks 

    Myllymäki, Mari (University of Jyväskylä, 2009)
  • Selaa aineistoja
  • Selaa aineistoja
  • Artikkelit
  • E-kirjat
  • Esitelmät ja posterit
  • Historialliset kartat
  • Julkaisusarjat
  • Konferenssit ja seminaarit
  • Lehdet
  • Opinnäytteet
  • Oppimateriaalit
  • Nuotit ja musiikki
  • Tutkimusdata
  • Tutkimusraportit
  • Valokuvat

Selaa

Kaikki aineistotKokoelmaluetteloJulkaisupäivätTekijätAsiasanatJulkaistuLaitosOppiaine

Omat tiedot

Kirjaudu sisään

Tilastot

Tarkastele käyttötilastoja
  • Kuinka julkaista JYXissä?
  • Rinnakkais­tallentaminen
  • Opinnäytteiden julkaisu
  • Väitöskirjojen julkaisu
  • Julkaisupalvelut

Avoin tiede JYU:ssa
 
Tietosuojailmoitus

Saavutettavuusseloste

Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.
Open Science Centre