University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Statistical methods for adaptive river basin management and monitoring

Thumbnail
View/Open
4.0Mb

Downloads:  
Show download detailsHide download details  
Published in
Jyväskylä studies in biological and environmental science
Authors
Kotamäki, Niina
Date
2018
Discipline
Ympäristötiede

 
Decision-making at different phases of adaptive river basin management planning rely largely on the information that is gained through environmental monitoring. The aim of this thesis was to develop and test statistical assessment tools presumed to be particularly useful for evaluating existing monitoring designs, converting monitoring data into management information and quantifying uncertainties. River basin scale monitoring was performed using a wireless sensor network and a data quality control system and maintenance effort was assessed. National-scale, traditional monitoring data and linear mixed effect modelling were used to estimate the uncertainty in two status class metrics (total phosphorus, and chlorophyll-a) by quantifying temporal and spatial variance components. The relative sizes of the variance components were then used to determine how to efficiently allocate the monitoring resources. Nutrient and chlorophyll-a statuses were linked to external loading utilizing a large amount of monitoring data and a hierarchical Bayesian approach. This linkage was the basis for developing a practical assessment tool for lake management. To evaluate the network of relationships affecting phytoplankton development between water quality variables, structural equation modelling was used. Model residual and parameter uncertainty, and thus uncertainty in the assessment result, were estimated using probabilistic Bayesian modelling. In general, the results of this study suggest that the used statistical methods appear to be particularly useful for decision-making under an adaptive management framework, as they enabled predictions to be made based on existing monitoring data and have measures of uncertainty associated with the outcomes. The results suggest that the uncertainties often stem from the lack of input data or insufficiently allocated monitoring. Therefore, it should be ensured that information gaps in the nutrient loading values, as well as in other, especially biological variables, are sufficiently covered. ...
Publisher
University of Jyväskylä
ISBN
978-951-39-7378-0
ISSN Search the Publication Forum
1456-9701
Contains publications
  • Artikkeli I: Kotamäki N., Thessler S., Koskiaho J., Hannukkala A.O., Huitu H., Huttula T., Havento J. & Järvenpää M. 2009. Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: evaluation from a data user’s perspective. Sensors 9(4): 2862–2883. DOI: 10.3390/s90402862.
  • Artikkeli II: Kotamäki, N., Järvinen, M., Kauppila, P., Korpinen, S., Lensu, A., Malve, O., Mitikka, S. and Kettunen, J. A practical approach to improve statistical performance of WFD monitoring networks. Manuscript.
  • Artikkeli III: Kotamäki N., Pätynen A., Taskinen A., Huttula T. & Malve O. 2015. Statistical dimensioning of nutrient loading reduction - LLR assessment tool for lake managers. Environmental Management 56: 480–491. DOI: 10.1007/s00267-015-0514-0.
  • Artikkeli IV: Pätynen A., Kotamäki N., Arvola L., Tulonen T. & Malve O. 2015. Causal analysis of phytoplankton development in a small humic lake using structural equation modelling. Inland Waters 5: 231–239. DOI: 10.5268/IW-5.3.736.
  • Artikkeli V: Pätynen A., Kotamäki N. & Malve O. 2013. Alternative approaches to modelling lake ecosystems. Freshwater Reviews 6: 63–74. DOI: 110.1608/FRJ-6.2.704.
Keywords
adaptive management Bayesian inference eutrophication monitoring statistical methods uncertainty Water Framework Directive ympäristönhoito vesienhoito vesipolitiikka päätöksenteko valuma-alueet vedenlaatu rehevöityminen monitorointi sensoriverkot tilastomenetelmät bayesilainen menetelmä
URI

http://urn.fi/URN:ISBN:978-951-39-7378-0

Metadata
Show full item record
Collections
  • Väitöskirjat [2610]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre