Näytä suppeat kuvailutiedot

dc.contributor.authorIvannikova, Elena
dc.contributor.authorPark, Hyunwoo
dc.contributor.authorHämäläinen, Timo
dc.contributor.authorLee, Kichun
dc.date.accessioned2017-12-20T09:40:21Z
dc.date.available2020-07-01T21:35:11Z
dc.date.issued2018
dc.identifier.citationIvannikova, E., Park, H., Hämäläinen, T., & Lee, K. (2018). Revealing community structures by ensemble clustering using group diffusion. <i>Information Fusion</i>, <i>42</i>(2018), 24-36. <a href="https://doi.org/10.1016/j.inffus.2017.09.013" target="_blank">https://doi.org/10.1016/j.inffus.2017.09.013</a>
dc.identifier.otherCONVID_27283943
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56455
dc.description.abstractWe propose an ensemble clustering approach using group diffusion to reveal community structures in data. We represent data points as a directed graph and assume each data point belong to single cluster membership instead of multiple memberships. The method is based on the concept of ensemble group diffusion with a parameter to represent diffusion depth in clustering. The ability to modulate the diffusion-depth parameter by varying it within a certain interval allows for more accurate construction of clusters. Depending on the value of the diffusion-depth parameter, the presented approach can determine very well both local clusters and global structure of data. At the same time, the ability to combine single outcomes of the method results in better cluster segmentation. Due to this property, the proposed method performs well on data sets where other conventional clustering methods fail. We test the method with both simulated and real-world data sets. The results support our theoretical conjectures on improved accuracy compared to other selected methods.
dc.language.isoeng
dc.publisherElsevier BV
dc.relation.ispartofseriesInformation Fusion
dc.subject.otherclustering
dc.subject.otherMarkov chain
dc.subject.othersocial network
dc.titleRevealing community structures by ensemble clustering using group diffusion
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201712194783
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-12-19T13:15:14Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange24-36
dc.relation.issn1566-2535
dc.relation.numberinseries2018
dc.relation.volume42
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 Elsevier B.V. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodiffuusio (fysikaaliset ilmiöt)
dc.subject.ysoyhdyskuntarakenne
jyx.subject.urihttp://www.yso.fi/onto/yso/p18009
jyx.subject.urihttp://www.yso.fi/onto/yso/p4183
dc.relation.doi10.1016/j.inffus.2017.09.013
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot