Global RDF Vector Space Embeddings
Cochez, M., Ristoski, P., Ponzetto, S. P., & Paulheim, H. (2017). Global RDF Vector Space Embeddings. In C. d'Amato, M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange, & J. Heflin (Eds.), ISWC 2017 - The Semantic Web : 16th International Semantic Web Conference, Proceedings, Part I (pp. 190-207). Springer. Lecture Notes in Computer Science, 10587. https://doi.org/10.1007/978-3-319-68288-4_12
Published in
Lecture Notes in Computer ScienceEditors
Date
2017Copyright
© Springer International Publishing AG 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
Vector space embeddings have been shown to perform well when using
RDF data in data mining and machine learning tasks. Existing approaches, such as
RDF2Vec, use local information, i.e., they rely on local sequences generated for
nodes in the RDF graph. For word embeddings, global techniques, such as GloVe,
have been proposed as an alternative. In this paper, we show how the idea of global
embeddings can be transferred to RDF embeddings, and show that the results are
competitive with traditional local techniques like RDF2Vec.
Publisher
SpringerParent publication ISBN
978-3-319-68287-7Conference
International Semantic Web ConferenceIs part of publication
ISWC 2017 - The Semantic Web : 16th International Semantic Web Conference, Proceedings, Part IISSN Search the Publication Forum
0302-9743Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27351483
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Taming big knowledge evolution
Cochez, Michael (University of Jyväskylä, 2016)Information and its derived knowledge are not static. Instead, information is changing over time and our understanding of it evolves with our ability and willingness to consume the information. When compared to humans, ... -
Evolutionary cloud for cooperative UAV coordination
Cochez, Michael; Periaux, Jacques; Terziyan, Vagan; Kamlyk, Kyryl; Tuovinen, Tero (University of Jyväskylä, 2014) -
Talent identification in soccer using a one-class support vector machine
Jauhiainen, S.; Äyrämö, S.; Forsman, H.; Kauppi, J-P. (Sciendo, 2019)Identifying potential future elite athletes is important in many sporting events. The successful identification of potential future elite athletes at an early age would help to provide high-quality coaching and training ... -
Global analysis of nuclear PDFs with LHC vector boson, single inclusive hadron and heavy quark data
Klasen, Michael; Duwentäster, P.; Jezo, T.; Kovarik, K.; Kusina, A.; Morfin, J. G.; Muzakka, K. F.; Olness, F. I.; Ruiz, R.; Schienbein, I.; Yu, J. Y. (Sissa Medialab, 2022)We discuss the two most recent global analyses of nuclear parton distribution functions within the nCTEQ approach. LHC data on W/Z-boson, single-inclusive hadron and heavy quark/quarkonium production are shown to not only ... -
Happamuutta ja emäksisyyttä tuottava ravinto ja 12 viikon yhdistetty kestävyys- ja voimaharjoittelu miehillä ja naisilla : vaikutukset kehonkoostumukseen, elimistön pH:hon ja luuntiheyteen
Kari, Aino (2013)Johdanto. Kestävyys- ja voimaharjoittelulla saadaan aikaan muutoksia kehonkoostumuksessa niin miehillä kuin naisillakin. Kestävyysharjoittelun aikaansaamat muutokset kohdistuvat suurimmaksi osaksi rasvakudokseen ja ...