Show simple item record

dc.contributor.authorWeymuth, Monika
dc.contributor.authorSauter, Stefan
dc.contributor.authorRepin, Sergey
dc.date.accessioned2017-12-12T06:49:05Z
dc.date.available2018-06-21T21:35:40Z
dc.date.issued2017
dc.identifier.citationWeymuth, M., Sauter, S., & Repin, S. (2017). A Posteriori Modelling-Discretization Error Estimate for Elliptic Problems with L ∞-Coefficients. <i>Computational Methods in Applied Mathematics</i>, <i>17</i>(3). <a href="https://doi.org/10.1515/cmam-2017-0015" target="_blank">https://doi.org/10.1515/cmam-2017-0015</a>
dc.identifier.otherCONVID_27107135
dc.identifier.otherTUTKAID_74374
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56257
dc.description.abstractWe consider elliptic problems with complicated, discontinuous diffusion tensor A0. One of the standard approaches to numerically treat such problems is to simplify the coefficient by some approximation, say Aε, and to use standard finite elements. In [19] a combined modelling-discretization strategy has been proposed which estimates the discretization and modelling errors by a posteriori estimates of functional type. This strategy allows to balance these two errors in a problem adapted way. However, the estimate of the modelling error is derived under the assumption that the difference A0 − Aε is bounded in the L∞-norm, which requires that the approximation of the coefficient matches the discontinuities of the original coefficient. Therefore this theory is not appropriate for applications with discontinuous coefficients along complicated, curved interfaces. Based on bounds for A0 − Aε in an L q -norm with q < ∞ we generalize the combined modelling-discretization strategy to a larger class of coefficients.
dc.language.isoeng
dc.publisherWalter de Gruyter GmbH
dc.relation.ispartofseriesComputational Methods in Applied Mathematics
dc.subject.othera posteriori error estimation
dc.subject.otherelliptic regularity
dc.subject.othermodel simplification
dc.titleA Posteriori Modelling-Discretization Error Estimate for Elliptic Problems with L ∞-Coefficients
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201712114606
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-12-11T13:15:06Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1609-4840
dc.relation.numberinseries3
dc.relation.volume17
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 Walter de Gruyter GmbH, Berlin/Boston. This is a final draft version of an article whose final and definitive form has been published by de Gryuter. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.relation.doi10.1515/cmam-2017-0015
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record