Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas

Abstract
Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the amount of epigenetic variation available to populations can reduce adaptation in environments where it otherwise happens. From genomic and epigenomic sequences from a subset of the populations, we see changes in methylation patterns between the evolved populations over-represented in some functional categories of genes, which is consistent with some of these differences being adaptive. Based on whole genome sequencing of evolved clones, the majority of DNA methylation changes do not appear to be linked to cis-acting genetic mutations. Our results show that transgenerational epigenetic effects play a role in adaptive evolution, and suggest that the relationship between changes in methylation patterns and differences in evolutionary outcomes, at least for quantitative traits such as cell division rates, is complex.
Main Authors
Format
Articles Research article
Published
2017
Series
Subjects
Publication in research information system
Publisher
Oxford University Press; Society for Molecular Biology and Evolution
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201712054499Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0737-4038
DOI
https://doi.org/10.1093/molbev/msx166
Language
English
Published in
Molecular Biology and Evolution
Citation
  • Kronholm, I., Bassett, A., Baulcombe, D., & Collins, S. (2017). Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Molecular Biology and Evolution, 34(9), 2285-2306. https://doi.org/10.1093/molbev/msx166
License
Open Access
Funder(s)
Research Council of Finland
Funding program(s)
Tutkijatohtori, SA
Postdoctoral Researcher, AoF
Research Council of Finland
Additional information about funding
This research is supported by ERC Grant 260266 and a Royal Society (UK) University Research Fellowship to S.C., I.K. is supported by the Academy of Finland grant no. 274769.
Copyright© The Authors 2017. This is a final draft version of an article whose final and definitive form has been published by OUP on behalf of the Society for Molecular Biology and Evolution. Published in this repository with the kind permission of the publisher.

Share