Show simple item record

dc.contributor.advisorGilbert, Leona
dc.contributor.advisorPuttaraksa, Nitipon
dc.contributor.authorPudas, Arttur
dc.date.accessioned2017-11-28T07:38:35Z
dc.date.available2017-11-28T07:38:35Z
dc.date.issued2017
dc.identifier.otheroai:jykdok.linneanet.fi:1802947
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/56026
dc.description.abstractKuivafilmilitografian karakterisointi Borrelia burgdorferi:n liikkuvuuden tutkimiselle. Borrelia burgdorferi on puutiaisten kantama spirokeettabakteeri, joka voi tarttua useisiin eläinlajeihin. Ihmisillä B. burgdorferi aiheuttaa borrelioosia. Tauti on laajalle levinnyt monissa pohjois- ja länsimaissa ja leviää entisestään ilmastonmuutoksen laajentaessa punkkien elinaluetta. Monet tekijät vaikeuttavat borrelioosin hoitoa. B. burgdorferin kyky välttää ihmisen luontaista immuunijärjestelmää ovat tässä suhteessa merkittävä. Bakteerien liikkuvuus on olennainen tämän kyvyn kannalta, mutta sen tarkka rooli bakteerien kyvyssä liikkua verisuonistossa on osittain tuntematon. Mikrofluidistiikka hyödyntää tiettyjä nesteiden dynamiikkaa ohjaavia voimia, jotka aiheuttavat nesteitä ja niiden kantamia partikkeleita käyttäytymään eri tavoin mikroskooppisessa ympäristössä makroskooppisiin ympäristöihin verrattuna. Valmistustekniikoiden edistyminen on mahdollistanut mikrofluidiikan etujen hyväksikäytön lisääntymisen ja edesauttanut sen kasvua voimakkaana biologisten tieteiden välineenä. Kuivakalvo-litografia tarjoaa helppokäyttöisen ja edullisen vaihtoehdon perinteisille mikrofluidisille valmistusmenetelmille, jotka edellyttävät puhdastiloja. Mikrofluidisten sirujen valmistukseen voidaan käyttää polydimetyylisiloksaani-polymeeria (PDMS), joka on joustava,  bioyhteensopiva ja yksinkertaistaa valmistusprosessia. Mikrofluidistiikka soveltuu erinomaisesti verisuonien, imusuonijärjestelmän ja muiden in vivo -järjestelmien, simulointiin. Tämän tutkimuksen tarkoituksena oli optimoida kuivakalvolitografiamenetelmä biologisissa kokeissa käytettäväksi ja suorittaa mikrofluidinen virtauskoe käyttäen eläviä B. burgdorferi soluja. Mikrofluidinen valmistusmenetelmä perustui mustesuihkutulostuksella tehtyihin peittomaskeihin. Kuparilevyt, joissa oli DuPont Riston 200 -sarjan negatiivinen fotoresistipäällystys, liitettiin maskeihin ja altistettiin UV:lle läheisyyslitografialla. Lopulliset mikofluidiset sirut valmistettiin PDMS:stä ja liitettiin lasipinnalle aktivoimalla sekä lasi että PDMS-pinnat plasmalla. Valmistusmenetelmä karakterisoitiin pyyhkäisyelektroni- ja stereomikroskopialla. Vihreää fluoresoivaa proteiinia tuottava B. burgdorferi GCB726 kanta syötettiin mikrokanavaan eri virtausnopeuksilla, jotka olivat korkeintaan 0,1 ml/min. Bakteerien liikkuvuus videoitiin fluoresenssimikroskopialla. Kuivakalvolitografian avulla mikrokanavat voitiin valmistaa luotettavasti 75 µm läpimittaan asti alle 5 tunnin kuluessa peittomaskin valmistuksesta. Vaikka kanavissa havaittiin pieniä vikoja, niiden vaikutus laminaariseen virtaukseen oli vähäpätöinen. Kuvataajuuden rajoitteiden vuoksi B. burgdorferi videokuva-aineistosta käytettiin vain 0,0073 cm/s:n virtausnopeudella tallennettuja videoita. B. burgdorferin liikkuvuus ilmeni kolmella tavalla: "Tanssimisessa", voltteina ja vuorovaikutuksena kanavan seinämän kanssa. Suurin osa mikrofluidisten sirujen valmistusprosesseissa havaituista vioista johtui läheisyyslitografiamenetelmän ja mustesuihkutulostimen rajoista. Tuloksia voitaisiin parantaa litografiaa optimoimalla ja parempi laatuisella maskitulostimella. Mikrosiruvalmistusprosessi oli tyydyttävä B. burgdorferin virtauksessa käyttäytymisen tarkkailemiseksi. B. burgdorferin liikkuvuus vaikutti aktiivisesti bakteerisolujen orientaatioon laminaarisessa virtauksessa, mikä johti hypoteesiin, että tämä liikkuvuus voisi antaa soluille mahdollisuuden uida verisuonijärjestelmässä. Lisätutkimuksia tarvitaan varmistamaan, onko tämä kardiovaskulaarinen liikkuvuus kehittynyt nimenomaan ratkaisevaksi ektravasaatiossa vai pelkkä välituote solujen kyvystä liikkua pehmytkudoksissa. Nämä tulokset osoittavat kuitenkin, että B. burgdorferin liikkuvuus saattaa auttaa bakteeria löytämään verisuonten seinä ekstravasaation aikana.fi
dc.description.abstractBorrelia burgdorferi is a species of sphirochete bacteria infecting multiple different species of animals via a tick vector. In humans B. burgdorferi causes lyme disease. In many northern and western countries the disease has advanced to an endemic state, and is spreading further due to climate change affecting the spread of its carrier vector. Many factors contribute to the difficulty controlling B. burgdorferi infections and Lyme disease. One of the main factors are the methods through which the bacteria are able to evade the immune system. The bacterial mobility of B. burgdorferi is a large contributing factor to this ability, but the extent to which this mobility is crucial in the extravasation step in its pathogenic life cycle remains partially unknown. Microfluidics takes advantage of the different scale dependencies of certain forces governing fluid dynamics that causes the fluids and particles within to behave differently in a microscale environment compared to the traditional macroscale. Advances in fabrication techniques have made utilizing the advantages of microfluidic techniques more widespread and enabled it to potentially grow into a powerful tool for biological sciences. Dry-film photolithography offers ease of use and a cheap alternative to traditional microfluidic fabrication methods which require access to clean room facilities. These microfluidic chips can be made with flexible polydimethylsiloxane (PDMS) polymer, which is biocompatible, and makes the fabrication process relatively simple. Microfluidics is ideally suited for simulating cardiovascular environments, and other in vivo systems, such as the lymphatic system. The aim of this study was to characterize and optimize a dry-film photolithography method for use in biological experiments, and to carry out a flow experiment using living B. burgdorferi cells. The microfluidic fabrication technique relied on masks made with inkjet printing. Pre laminated copper plates with DuPont Riston 200 series negative photoresist were then coupled with the masks and exposed under UV with a proximity lithography method. The final chips were manufactured in PDMS, and coupled with a glass substrate by activating both the glass and PDMS surfaces with air plasma. The fabrication method was characterized with scanning electron microscopy and stereo microscopy. A green fluorescent protein expressig strain of B. burgdorferi GCB726 flown in a microchannel at flow rates of up to 0.1 ml/min. Video footage of these experiments were captured with fluorescent microscopy technique. With the dry-film photolithography technique microchannel structures could be reliably fabricated down to 75 µm resolution in less than 5 h from the mask fabrication to the final product. Though small defects were observed in the channel their effect on the laminar flow was negligible. Due to framerate constreaints only footage of B. burgdorferi in 0.0073 cm/s flow speed used. B. burgdorferi mobility in flow was observed in three distinct patterns: ‘Dancing’, flipping, and interacting with the channel wall. Most of the defects observed in the microfluidic chip fabrication processes were due to intrinsic to our proximity photolithography set-up and limits of the ink-jet printer. However, the results could be improved by further optimizing the photolithography set-up and with higher quality mask printing. The microchip fabrication process was satisfactory for the fast and cheap production of microfluidic experiment set-ups to observe B. burgdorferi in flow. The mobility of B. burgdorferi actively changed the orientation of the bacterial cells in laminar flow, which lead to the hypothesis that their mobility could confer the cells an ability to swim in the cardiovascular system. Additional studies are required to confirm whether or not this cardiovascular mobility is crucial for the pathogenesis or simply a byproduct of the cell’s ability to move within tissues and therefore inconsequential to whether or not they find the target tissues to infect. However, these results indicate that the mobility of B. burgdorferi contribute to its ability to find the vascular wall during extravasation.en
dc.format.extent1 verkkoaineisto (32 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rightsThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.subject.othermikrofluidiikka
dc.subject.otherkuivafilmilitografia
dc.subject.othermikrofluidics
dc.titleCharacterization of dry-film photolithography for the study of B. burgdorferi motility
dc.identifier.urnURN:NBN:fi:jyu-201711284397
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineCell and molecular biologyen
dc.date.updated2017-11-28T07:38:36Z
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4013
dc.subject.ysobakteerit
dc.subject.ysoliikkuvuus
dc.subject.ysoBorrelia burgdorferi
dc.subject.ysoLymen borrelioosi
dc.subject.ysoborrelioosi
dc.format.contentfulltext
dc.type.okmG2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record