Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

Abstract
We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider OðNÞ- symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1=N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean selfinteractions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥ 2, the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.
Main Authors
Format
Articles Research article
Published
2017
Series
Subjects
Publication in research information system
Publisher
American Physical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201711034134Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
2470-0010
DOI
https://doi.org/10.1103/PhysRevD.96.076020
Language
English
Published in
Physical Review D
Citation
  • Berges, J., Boguslavski, K., Chatrchyan, A., & Jaeckel, J. (2017). Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories. Physical Review D, 96(7), Article 076020. https://doi.org/10.1103/PhysRevD.96.076020
License
Open Access
Copyright© 2017 American Physical Society. Published in this repository with the kind permission of the publisher.

Share