A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders

Abstract
Menetelmä poikkeavuuksien havaitsemiseen hyperspektrikuvista käyttäen syviä konvolutiivisia autoenkoodereita. Poikkeavuuksien havaitseminen kuvista, erityisesti hyperspektraalisista kuvista, on hankalaa. Kun ongelmaan yhdistetään ennalta tuntematon data ja poikkeavuudet, muodostuu ongelma vielä laajemmaksi. Spektraalisten poikkeavuuksien havaitsemiseen on kehitetty useita eri menetelmiä, mutta spatiaalisten poikkeavuuksien havaitseminen on huomattavasti hankalempaa. Tässä työssä esitellään uudenkaltainen menetelmä sekä spatiaalisten että spektraalisten poikkeavuuksien samanaikaiseen havaitsemiseen. Menetelmä on suunniteltu erityisesti spektraaliselle datalle, mutta soveltuu myös perinteisille kuville. Menetelmässä kolmiulotteisilla konvolutionaalisilla autoenkoodereilla löydetään koulutus-datassa esiintyviä normaaleja piirteitä. Tätä verkkoa käyttämällä voidaan testidata projisoida piirre-avaruuteen. Tästä projisoidusta datasta voidaan etsiä poikkeavuuksia käyttäen perinteisiä algoritmeja. Työssä esitetään kahdet erilliset tulokset. Ensimmäisissä on esitetty menetelmän toimivuus todellisuutta vastaavassa tilanteessa, jossa tietoa poikkeavuuksista ei ole etukäteen. Näiden tulosten lisäksi toinen ajo datalla, johon on lisätty synteettisiä tunnettuja poikkeavuuksia suoritetaan. Tämän toisen ajon tulokset voidaan validoida, koska anomaliat ovat nyt tunnettuja.
Main Author
Format
Theses Master thesis
Published
2017
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201711144248Käytä tätä linkitykseen.
Language
English
License
In CopyrightOpen Access

Share