Show simple item record

dc.contributor.authorJohansson, Andreas
dc.contributor.authorMyllyperkiö, Pasi
dc.contributor.authorKoskinen, Pekka
dc.contributor.authorAumanen, Jukka
dc.contributor.authorKoivistoinen, Juha
dc.contributor.authorTsai, Hung-Chieh
dc.contributor.authorChen, Chia-Hao
dc.contributor.authorChang, Lo-Yueh
dc.contributor.authorHiltunen, Vesa-Matti
dc.contributor.authorManninen, Jyrki
dc.contributor.authorWoon, Wei-Yen
dc.contributor.authorPettersson, Mika
dc.date.accessioned2017-10-25T10:22:16Z
dc.date.available2018-09-20T21:35:30Z
dc.date.issued2017
dc.identifier.citationJohansson, A., Myllyperkiö, P., Koskinen, P., Aumanen, J., Koivistoinen, J., Tsai, H.-C., Chen, C.-H., Chang, L.-Y., Hiltunen, V.-M., Manninen, J., Woon, W.-Y., & Pettersson, M. (2017). Optical Forging of Graphene into Three-Dimensional Shapes. <i>Nano Letters</i>, <i>17</i>(10), 6469-6474. <a href="https://doi.org/10.1021/acs.nanolett.7b03530" target="_blank">https://doi.org/10.1021/acs.nanolett.7b03530</a>
dc.identifier.otherCONVID_27239895
dc.identifier.otherTUTKAID_75095
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/55695
dc.description.abstractAtomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesNano Letters
dc.subject.otheroptical forging
dc.subject.othernanoscale devices
dc.titleOptical Forging of Graphene into Three-Dimensional Shapes
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201710123982
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-10-12T12:15:05Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange6469-6474
dc.relation.issn1530-6984
dc.relation.numberinseries10
dc.relation.volume17
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.subject.ysografeeni
jyx.subject.urihttp://www.yso.fi/onto/yso/p24483
dc.relation.doi10.1021/acs.nanolett.7b03530
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record