Orthogonal switching of AMS axes during type-2 fold interference : Insights from integrated X-ray computed tomography, AMS and 3D petrography
Abstract
We applied X-ray computed microtomography (μ-CT) in combination with anisotropy of magnetic susceptibility (AMS) analysis to study metamorphic rock fabrics in an oriented drill core sample of pyrite-pyrrhotite-quartz-mica schist. The sample is extracted from the Paleoproterozoic Martimo metasedimentary belt of northern Finland. The μ-CT resolves the spatial distribution, shape and orientation of 25,920 pyrrhotite and 153 pyrite grains localized in mm-thick metapelitic laminae. Together with microstructural analysis, the μ-CT allows us to interpret the prolate symmetry of the AMS ellipsoid and its relationship to the deformation history. AMS of the sample is controlled by pyrrhotite porphyroblasts that grew syntectonically during D1 in subhorizontal microlithons. The short and intermediate axes (K3 and K2) of the AMS ellipsoid interchanged positions during a subsequent deformation (D2) that intensely crenulated S1 and deformed pyrrhotite, while the long axes (K1) maintained a constant position parallel to the maximum stretching direction. However, it is likely that all the three AMS axes switched, similar to the three principal axes of the shape ellipsoid of pyrite porphyroblasts from D1 to D2. The superposition of D1 and D2 produced a type-2 fold interference pattern.
Main Authors
Format
Articles
Research article
Published
2017
Series
Subjects
Publication in research information system
Publisher
Pergamon Press
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201709273844Use this for linking
Review status
Peer reviewed
ISSN
0191-8141
DOI
https://doi.org/10.1016/j.jsg.2017.09.002
Language
English
Published in
Journal of Structural Geology
Citation
- Sayab, M., Miettinen, A., Aerden, D., & Karell, F. (2017). Orthogonal switching of AMS axes during type-2 fold interference : Insights from integrated X-ray computed tomography, AMS and 3D petrography. Journal of Structural Geology, 103, 1-16. https://doi.org/10.1016/j.jsg.2017.09.002
Copyright© 2017 Elsevier Ltd. This is a final draft version of an article whose final and definitive form has been published by Pergamon Press. Published in this repository with the kind permission of the publisher.