On the interior regularity of weak solutions to the 2-D incompressible Euler equations
Siljander, J., & Urbano, J. M. (2017). On the interior regularity of weak solutions to the 2-D incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 56(5), Article 126. https://doi.org/10.1007/s00526-017-1231-8
Date
2017Copyright
© Springer-Verlag GmbH Germany 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We study whether some of the non-physical properties observed
for weak solutions of the incompressible Euler equations can be ruled out by
studying the vorticity formulation. Our main contribution is in developing
an interior regularity method in the spirit of De Giorgi-Nash-Moser, showing
that local weak solutions are exponentially integrable, uniformly in time, under
minimal integrability conditions. This is a Serrin-type interior regularity result
u ∈ L
2+ε
loc (ΩT ) =⇒ local regularity
for weak solutions in the energy space L∞t L2
x, satisfying appropriate vorticity
estimates. We also obtain improved integrability for the vorticity – which
is to be compared with the DiPerna-Lions assumptions. The argument is
completely local in nature as the result follows from the structural properties of
the equation alone, while completely avoiding all sorts of boundary conditions
and related gradient estimates. To the best of our knowledge, the approach
we follow is new in the context of Euler equations and provides an alternative
look at interior regularity issues. We also show how our method can be used
to give a modified proof of the classical Serrin condition for the regularity of
the Navier-Stokes equations in any dimension.
...
Publisher
SpringerISSN Search the Publication Forum
0944-2669Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27175692
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Matematiikkaa yhdessä : ikäsidonnaisuuden ylittävä opetuskokeilu perusopetuksessa
Koukka, Riikka (2019)Opetuskokeilun idea lähti liikkeelle halusta irrottautua perinteisestä ikäsidonnaisesta koulusysteemistä ja löytää uusia näkökulmia opetukseen eri ikäisten oppilaiden välisestä vuorovaikutuksesta. Tutkimustehtävänä oli ... -
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ... -
Quadrature Domains for the Helmholtz Equation with Applications to Non-scattering Phenomena
Kow, Pu-Zhao; Larson, Simon; Salo, Mikko; Shahgholian, Henrik (Springer Science and Business Media LLC, 2022)In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering ... -
An Inverse Problem for the Relativistic Boltzmann Equation
Balehowsky, Tracey; Kujanpää, Antti; Lassas, Matti; Liimatainen, Tony (Springer, 2022)We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in a neighbourhood V⊂M of a timelike path μ that connects ... -
Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form
Kurkinen, Tapio; Parviainen, Mikko; Siltakoski, Jarkko (Wiley-Blackwell, 2023)We prove an elliptic Harnack's inequality for a general form of a parabolic equation that generalizes both the standard parabolic -Laplace equation and the normalized version that has been proposed in stochastic game theory. ...