On the interior regularity of weak solutions to the 2-D incompressible Euler equations
Siljander, J., & Urbano, J. M. (2017). On the interior regularity of weak solutions to the 2-D incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 56(5), Article 126. https://doi.org/10.1007/s00526-017-1231-8
Date
2017Copyright
© Springer-Verlag GmbH Germany 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
We study whether some of the non-physical properties observed
for weak solutions of the incompressible Euler equations can be ruled out by
studying the vorticity formulation. Our main contribution is in developing
an interior regularity method in the spirit of De Giorgi-Nash-Moser, showing
that local weak solutions are exponentially integrable, uniformly in time, under
minimal integrability conditions. This is a Serrin-type interior regularity result
u ∈ L
2+ε
loc (ΩT ) =⇒ local regularity
for weak solutions in the energy space L∞t L2
x, satisfying appropriate vorticity
estimates. We also obtain improved integrability for the vorticity – which
is to be compared with the DiPerna-Lions assumptions. The argument is
completely local in nature as the result follows from the structural properties of
the equation alone, while completely avoiding all sorts of boundary conditions
and related gradient estimates. To the best of our knowledge, the approach
we follow is new in the context of Euler equations and provides an alternative
look at interior regularity issues. We also show how our method can be used
to give a modified proof of the classical Serrin condition for the regularity of
the Navier-Stokes equations in any dimension.
...
Publisher
SpringerISSN Search the Publication Forum
0944-2669Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27175692
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Regularity properties of spheres in homogeneous groups
Le Donne, Enrico; Nicolussi Golo, Sebastiano (American Mathematical Society, 2018)We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. ... -
An Inverse Problem for the Relativistic Boltzmann Equation
Balehowsky, Tracey; Kujanpää, Antti; Lassas, Matti; Liimatainen, Tony (Springer, 2022)We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in a neighbourhood V⊂M of a timelike path μ that connects ... -
Hamilton-Jacobi equations
Brander, Tommi (2012)Tämä Pro gradu-tutkielma käsittelee Hamiltonin ja Jacobin yhtälöitä, jotka kuvaavat mekaanisen järjestelmän kehitystä klassisen mekaniikan puitteissa. Hamiltonin ja Jacobin yhtälöitä käytetään myös säätöteoriassa sekä ... -
Matematiikkaa yhdessä : ikäsidonnaisuuden ylittävä opetuskokeilu perusopetuksessa
Koukka, Riikka (2019)Opetuskokeilun idea lähti liikkeelle halusta irrottautua perinteisestä ikäsidonnaisesta koulusysteemistä ja löytää uusia näkökulmia opetukseen eri ikäisten oppilaiden välisestä vuorovaikutuksesta. Tutkimustehtävänä oli ... -
Köydenvetopeli satunnaiskohinalla ja p-Laplacen yhtälö
Taipalus, Janne (2023)Tässä tutkielmassa tutustumme köydenvetopeliin satunnaiskohinalla. Kyseinen peli on kahden pelaajan stokastinen peli, jossa kukin pelaaja yrittää saavuttaa alueen reunan sellaisesta kohdasta, joka on hänelle edullinen. ...