University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Artikkelit
  • Matemaattis-luonnontieteellinen tiedekunta
  • View Item
JYX > Artikkelit > Matemaattis-luonnontieteellinen tiedekunta > View Item

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

ThumbnailFinal Draft
View/Open
376.9Kb

Downloads:  
Show download detailsHide download details  
Siljander, J., & Urbano, J. M. (2017). On the interior regularity of weak solutions to the 2-D incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 56 (5), 126. doi:10.1007/s00526-017-1231-8
Published in
Calculus of Variations and Partial Differential Equations
Authors
Siljander, Juhana |
Urbano, José Miguel
Date
2017
Discipline
Matematiikka
Copyright
© Springer-Verlag GmbH Germany 2017. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.

 
We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi-Nash-Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result u ∈ L 2+ε loc (ΩT ) =⇒ local regularity for weak solutions in the energy space L∞t L2 x, satisfying appropriate vorticity estimates. We also obtain improved integrability for the vorticity – which is to be compared with the DiPerna-Lions assumptions. The argument is completely local in nature as the result follows from the structural properties of the equation alone, while completely avoiding all sorts of boundary conditions and related gradient estimates. To the best of our knowledge, the approach we follow is new in the context of Euler equations and provides an alternative look at interior regularity issues. We also show how our method can be used to give a modified proof of the classical Serrin condition for the regularity of the Navier-Stokes equations in any dimension. ...
Publisher
Springer
ISSN Search the Publication Forum
0944-2669
Keywords
mathematics equations interior regularity weak solutions Euler equations
DOI
10.1007/s00526-017-1231-8
URI

http://urn.fi/URN:NBN:fi:jyu-201708253570

Metadata
Show full item record
Collections
  • Matemaattis-luonnontieteellinen tiedekunta [3678]
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement
Open Science Centre