Minimality via second variation for microphase separation of diblock copolymer melts

Abstract
We consider a non-local isoperimetric problem arising as the sharp interface limit of the Ohta–Kawasaki free energy introduced to model microphase separation of diblock copolymers. We perform a second order variational analysis that allows us to provide a quantitative second order minimality condition. We show that critical configurations with positive second variation are indeed strict local minimizers of the problem. Moreover, we provide, via a suitable quantitative inequality of isoperimetric type, an estimate of the deviation from minimality for configurations close to the minimum in the L1 -topology.
Main Authors
Format
Articles Research article
Published
2017
Series
Subjects
Publication in research information system
Publisher
Walter de Gruyter GmbH & Co. KG
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201708043416Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
0075-4102
DOI
https://doi.org/10.1515/crelle-2014-0117
Language
English
Published in
Journal für die reine und angewandte Mathematik
Citation
  • Julin, V., & Pisante, G. (2017). Minimality via second variation for microphase separation of diblock copolymer melts. Journal für die reine und angewandte Mathematik, 2017(729), 81-117. https://doi.org/10.1515/crelle-2014-0117
License
Open Access
Copyright© De Gruyter 2017. Published in this repository with the kind permission of the publisher.

Share