Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication
Robertsén, F., Westerholm, J., & Mattila, K. (2017). Designing a graphics processing unit accelerated petaflop capable lattice Boltzmann solver: Read aligned data layouts and asynchronous communication. International Journal of High Performance Computing Applications, 31(3), 246-255. https://doi.org/10.1177/1094342016658109
Julkaistu sarjassa
International Journal of High Performance Computing ApplicationsPäivämäärä
2017Tekijänoikeudet
© The Author(s) 2016. This is a final draft version of an article whose final and definitive form has been published by Sage. Published in this repository with the kind permission of the publisher.
The lattice Boltzmann method is a well-established numerical approach for complex fluid flow simulations. Recently, general-purpose graphics processing units (GPUs) have become available as high-performance computing resources at large scale. We report on designing and implementing a lattice Boltzmann solver for multi-GPU systems that achieves 1.79 PFLOPS performance on 16,384 GPUs. To achieve this performance, we introduce a GPU compatible version of the so-called bundle data layout and eliminate the halo sites in order to improve data access alignment. Furthermore, we make use of the possibility to overlap data transfer between the host central processing unit and the device GPU with computing on the GPU. As a benchmark case, we simulate flow in porous media and measure both strong and weak scaling performance with the emphasis being on large-scale simulations using realistic input data.
Julkaisija
SageISSN Hae Julkaisufoorumista
1094-3420Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27057602
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Implementation techniques for the lattice Boltzmann method
Mattila, Keijo (University of Jyväskylä, 2010) -
High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method
Hegele, L. A.; Scagliarini, A.; Sbragaglia, M.; Mattila, Keijo; Philippi, P. C.; Puleri, D. F.; Gounley, J.; Randles, A. (American Physical Society, 2018)We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a ... -
On GPU-accelerated fast direct solvers and their applications in image denoising
Myllykoski, Mirko (University of Jyväskylä, 2015) -
Simulations of fluid flow in porous media by lattice-gas and lattice-Boltzmann methods
Koponen, Antti (1998)Lattice-gas and lattice-Boltzmann methods can provide promising alternative approaches to traditional computational fluid dynamics. The geometric versatility of these methods makes them very attractive for simulating many ... -
High-order regularization in lattice-Boltzmann equations
Mattila, Keijo; Philippi, Paulo C.; Hegele, Luiz A. (American Institute of Physics, 2017)A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.