Show simple item record

dc.contributor.authorNguyen, Hung Khanh
dc.contributor.authorZhang, Yanru
dc.contributor.authorChang, Zheng
dc.contributor.authorHan, Zhu
dc.date.accessioned2017-06-29T05:51:54Z
dc.date.available2017-06-29T05:51:54Z
dc.date.issued2017
dc.identifier.citationNguyen, H. K., Zhang, Y., Chang, Z., & Han, Z. (2017). Parallel and Distributed Resource Allocation With Minimum Traffic Disruption for Network Virtualization. <i>IEEE Transactions on Communications</i>, <i>65</i>(3), 1162-1175. <a href="https://doi.org/10.1109/TCOMM.2017.2650994" target="_blank">https://doi.org/10.1109/TCOMM.2017.2650994</a>
dc.identifier.otherCONVID_26970555
dc.identifier.otherTUTKAID_73602
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/54709
dc.description.abstractWireless network virtualization has been advocated as one of the most promising technologies to provide multifarious services and applications for the future Internet by enabling multiple isolated virtual wireless networks to coexist and share the same physical wireless resources. Based on the multiple concurrent virtual wireless networks running on the shared physical substrate, service providers can independently manage and deploy different end-users services. This paper proposes a new formulation for bandwidth allocation and routing problem for multiple virtual wireless networks that operate on top of a single substrate network to minimize the operation cost of the substrate network. We also propose a preventive traffic disruption model for virtual wireless networks to minimize the amount of traffic that service providers have to reduce when substrate links fail by incorporating 1-norm into the objective function. Due to the large number of constraints in both normal state and link failure states, the formulated problem becomes a largescale optimization problem and is very challenging to solve using the centralized computational method. Therefore, we propose the decomposition algorithms using the alternating direction method of multipliers that can be implemented in a parallel and distributed fashion. The simulation results demonstrate the computational efficiency of our proposed algorithms as well as the advantage of the formulated model in ensuring the minimal amount of traffic disruption when substrate links fail.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartofseriesIEEE Transactions on Communications
dc.subject.otherwireless network virtualization
dc.subject.otherADMM
dc.subject.otherdistributed algorithm
dc.subject.otherpreventive traffic disruption
dc.titleParallel and Distributed Resource Allocation With Minimum Traffic Disruption for Network Virtualization
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201706273068
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-06-27T12:15:08Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1162-1175
dc.relation.issn0090-6778
dc.relation.numberinseries3
dc.relation.volume65
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 IEEE. This is an author's final draft version of an article whose final and definitive form has been published by IEEE. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.subject.ysoresursointi
dc.subject.ysoreititys
jyx.subject.urihttp://www.yso.fi/onto/yso/p24562
jyx.subject.urihttp://www.yso.fi/onto/yso/p23476
dc.relation.doi10.1109/TCOMM.2017.2650994
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record