Show simple item record

dc.contributor.authorChun, Hee-Joon
dc.contributor.authorApaja, Vesa
dc.contributor.authorClayborne, Andre
dc.contributor.authorHonkala, Karoliina
dc.contributor.authorGreeley, Jeffrey
dc.date.accessioned2017-06-07T12:14:29Z
dc.date.available2018-04-17T21:45:08Z
dc.date.issued2017
dc.identifier.citationChun, H.-J., Apaja, V., Clayborne, A., Honkala, K., & Greeley, J. (2017). Atomistic Insights into Nitrogen-Cycle Electrochemistry : A Combined DFT and Kinetic Monte Carlo Analysis of NO Electrochemical Reduction on Pt(100). <i>ACS Catalysis</i>, <i>7</i>(6), 3869-3882. <a href="https://doi.org/10.1021/acscatal.7b00547" target="_blank">https://doi.org/10.1021/acscatal.7b00547</a>
dc.identifier.otherCONVID_26974835
dc.identifier.otherTUTKAID_73625
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/54354
dc.description.abstractElectrocatalytic denitrification is a promising technology for the removal of NOx species in groundwater. However, a lack of understanding of the molecular pathways that control the overpotential and product distribution have limited the development of practical electrocatalysts, and additional atomic-level insights are needed to advance this field. Adsorbed NO has been identified as a key intermediate in the NOx electroreduction network, and the elementary steps by which it decomposes to NH4+, N2, NH3OH+, or N2O remain a subject of debate. Herein, we report a combined density functional theory (DFT) and kinetic Monte Carlo (kMC) study of this reaction on Pt(100), a catalytic surface that is known to be suitable for the activation of strong covalent bonds, in acidic electrolytes. This approach describes the effects of coverage-dependent adsorbate–adsorbate interactions, water-mediated protonation kinetics and thermodynamics, and transient potential sweeps, on reaction rates and selectivities. The results predict NO stripping curves in excellent agreement with experiments while, at the same time, providing a mechanistic interpretation of observed current peaks. Furthermore, production of NH4+ products is traced to the rapid kinetics of N–O bond breaking in reactive intermediates, whereas rapid hydrogenation of surface N* species prevent competing pathways from forming either N2 or N2O. The combined DFT-kMC methodology thus provides a unique tool to describe the mechanism and energetics of platinum-catalyzed electroreduction in the nitrogen cycle, and this approach should also find application to related electrocatalytic processes that are of technological and environmental interest.
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS Catalysis
dc.subject.otherNO electroreduction
dc.subject.otherPt(100)
dc.subject.otherkinetic Monte Carlo
dc.titleAtomistic Insights into Nitrogen-Cycle Electrochemistry : A Combined DFT and Kinetic Monte Carlo Analysis of NO Electrochemical Reduction on Pt(100)
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201706022650
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2017-06-02T14:56:28Z
dc.type.coarjournal article
dc.description.reviewstatuspeerReviewed
dc.format.pagerange3869-3882
dc.relation.issn2155-5435
dc.relation.numberinseries6
dc.relation.volume7
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 American Chemical Society. This is a final draft version of an article whose final and definitive form has been published by ACS. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysoelektrokatalyysi
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p38660
dc.relation.doi10.1021/acscatal.7b00547


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record