On time-harmonic Maxwell equations with nonhomogeneous conductivities : Solvability and FE-approximation
Křížek, M. & Neittaanmäki, P (1989). On time-harmonic Maxwell equations with nonhomogeneous conductivities : Solvability and FE-approximation. Aplikace matematiky, 34.6 (1989): 480-499. Retrieved from https://eudml.org/doc/15604
Julkaistu sarjassa
Aplikace matematikyPäivämäärä
1989Tekijänoikeudet
© EuDML
The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the probJem in question. Moreover, a finite element approximation is presented in the 3D·case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.
Julkaisija
Ceskoslovenska Akademie VedISSN Hae Julkaisufoorumista
0862-7940
Alkuperäislähde
https://eudml.org/doc/15604Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
Mönkölä, Sanna; Räbinä, Jukka; Rossi, Tuomo (Academie des Sciences, 2023)In this paper, we apply the exact controllability concept for time-harmonic electromagnetic scattering. The problem is presented in terms of the differential forms, and the discrete exterior calculus is utilized for spatial ... -
A damping preconditioner for time-harmonic wave equations in fluid and elastic material
Airaksinen, Tuomas; Pennanen, Anssi; Toivanen, Jari (Elsevier, 2009)A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional ... -
Time-harmonic elasticity with controllability and higher-order discretization methods
Mönkölä, Sanna; Heikkola, Erkki; Pennanen, Anssi; Rossi, Tuomo (Elsevier, 2008)The time-harmonic solution of the linear elastic wave equation is needed for a variety of applications. The typical procedure for solving the time-harmonic elastic wave equation leads to difficulties solving large-scale ... -
Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability
Saksa, Tytti (Elsevier, 2025)This paper discusses computation of time-harmonic wave problems using a mixed formulation and the controllability method introduced by Roland Glowinski. As an example, a scattering problem (in an exterior domain) is ... -
Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements
Mönkölä, Sanna (Elsevier, 2010)The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.