On Using Decision Maker Preferences with ParEGO
Hakanen, J., & Knowles, J. D. (2017). On Using Decision Maker Preferences with ParEGO. In H. Trautmann, G. Rudolph, K. Klamroth, O. Schütze, M. Wiecek, Y. Jin, & C. Grimme (Eds.), Evolutionary Multi-Criterion Optimization : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, Proceedings (pp. 282-297). Springer International Publishing. Lecture Notes in Computer Science, 10173. https://doi.org/10.1007/978-3-319-54157-0_20
Published in
Lecture Notes in Computer ScienceEditors
Date
2017Copyright
© 2017 Springer International Publishing AG. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
In this paper, an interactive version of the ParEGO algorithm is introduced for identifying most preferred solutions for computationally expensive multiobjective optimization problems. It enables a decision maker to guide the search with her preferences and change them in case new insight is gained about the feasibility of the preferences. At each interaction, the decision maker is shown a subset of non-dominated solutions and she is assumed to provide her preferences in the form of preferred ranges for each objective. Internally, the algorithm samples reference points within the hyperbox defined by the preferred ranges in the objective space and uses a DACE model to approximate an achievement (scalarizing) function as a single objective to scalarize the problem. The resulting solution is then evaluated with the real objective functions and used to improve the DACE model in further iterations. The potential of the proposed algorithm is illustrated via a four-objective optimization problem related to water management with promising results.
...
Publisher
Springer International PublishingParent publication ISBN
978-3-319-54156-3Conference
International Conference on Evolutionary Multi-Criterion OptimizationIs part of publication
Evolutionary Multi-Criterion Optimization : 9th International Conference, EMO 2017, Münster, Germany, March 19-22, 2017, ProceedingsISSN Search the Publication Forum
0302-9743Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26560837
Metadata
Show full item recordCollections
Related items
Showing items with similar title or keywords.
-
Multiobjective shape design in a ventilation system with a preference-driven surrogate-assisted evolutionary algorithm
Chugh, Tinkle; Kratky, Tomas; Miettinen, Kaisa; Jin, Yaochu; Makkonen, Pekka (ACM, 2019)We formulate and solve a real-world shape design optimization problem of an air intake ventilation system in a tractor cabin by using a preference-based surrogate-assisted evolutionary multiobjective optimization algorithm. ... -
An interactive surrogate-based method for computationally expensive multiobjective optimisation
Tabatabaei, Mohammad; Hartikainen, Markus; Sindhya, Karthik; Hakanen, Jussi; Miettinen, Kaisa (Palgrave Macmillan Ltd., 2019)Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive ... -
Surrogate assisted interactive multiobjective optimization in energy system design of buildings
Aghaei Pour, Pouya; Rodemann, Tobias; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2022)In this paper, we develop a novel evolutionary interactive method called interactive K-RVEA, which is suitable for computationally expensive problems. We use surrogate models to replace the original expensive objective ... -
A new preference handling technique for interactive multiobjective optimization without trading-off
Miettinen, Kaisa; Podkopaev, Dmitry; Ruiz, Francisco; Luque, Mariano (Springer US, 2015)Because the purpose of multiobjective optimization methods is to optimize conflicting objectives simultaneously, they mainly focus on Pareto optimal solutions, where improvement with respect to some objective is only ... -
Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluations
Saini, Bhupinder Singh; Emmerich, Michael; Mazumdar, Atanu; Afsar, Bekir; Shavazipour, Babooshka; Miettinen, Kaisa (Springer Science and Business Media LLC, 2022)We introduce novel concepts to solve multiobjective optimization problems involving (computationally) expensive function evaluations and propose a new interactive method called O-NAUTILUS. It combines ideas of trade-off ...