Näytä suppeat kuvailutiedot

dc.contributor.authorPuurtinen, Mikael
dc.contributor.authorElo, Merja
dc.contributor.authorJalasvuori, Matti
dc.contributor.authorKahilainen, Aapo
dc.contributor.authorKetola, Tarmo
dc.contributor.authorKotiaho, Janne Sakari
dc.contributor.authorMönkkönen, Mikko
dc.contributor.authorPentikäinen, Olli
dc.date.accessioned2016-12-20T07:20:32Z
dc.date.available2016-12-20T07:20:32Z
dc.date.issued2016
dc.identifier.citationPuurtinen, M., Elo, M., Jalasvuori, M., Kahilainen, A., Ketola, T., Kotiaho, J. S., Mönkkönen, M., & Pentikäinen, O. (2016). Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity. <i>Ecography</i>, <i>39</i>(11), 1025-1033. <a href="https://doi.org/10.1111/ecog.01948" target="_blank">https://doi.org/10.1111/ecog.01948</a>
dc.identifier.otherCONVID_25451586
dc.identifier.otherTUTKAID_68651
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/52461
dc.description.abstractDistribution of species across the Earth shows strong latitudinal and altitudinal gradients with the number of species decreasing with declining temperatures. While these patterns have been recognized for well over a century, the mechanisms generating and maintaining them have remained elusive. Here, we propose a mechanistic explanation for temperature-dependent rates of molecular evolution that can influence speciation rates and global biodiversity gradients. Our hypothesis is based on the effects of temperature and temperature-adaptation on stability of proteins and other catalytic biomolecules. First, due to the nature of physical forces between biomolecules and water, stability of biomolecules is maximal around + 20°C and decreases as temperature either decreases or increases. Second, organisms that have adapted to cold temperatures have evolved especially flexible (but unstable) proteins to facilitate catalytic reactions in cold, where molecular movements slow down. Both these effects should result in mutations being on average more detrimental at cold temperatures (i.e. lower mutational robustness in cold). At high temperatures, destabilizing water–biomolecule interactions, and the need to maintain structures that withstand heat denaturation, should decrease mutational robustness similarly. Decreased mutational robustness at extreme temperatures will slow down molecular evolution, as a larger fraction of new mutations will be removed by selection. Lower mutational robustness may also select for reduced mutation rates, further slowing down the rate of molecular evolution. As speciation requires the evolution of epistatic incompatibilities that prevent gene flow among incipient species, slow rate of molecular evolution at extreme temperatures will directly slow down the rate at which new species arise. The proposed mechanism can thus explain why molecular evolution is faster at warm temperatures, contributing to higher speciation rate and elevated species richness in environments characterized by stable and warm temperatures.
dc.language.isoeng
dc.publisherWiley-Blackwell Publishing, Inc.; Nordic Society Oikos
dc.relation.ispartofseriesEcography
dc.subject.otherspecies diversity
dc.subject.othermolecular evolution
dc.subject.othermutational robustness
dc.titleTemperature-dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201612195154
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosTiedemuseofi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosUniversity Museumen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineBiologisten vuorovaikutusten huippututkimusyksikköfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineMuseofi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineCentre of Excellence in Biological Interactions Researchen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineMuseumen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-12-19T10:15:04Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1025-1033
dc.relation.issn0906-7590
dc.relation.numberinseries11
dc.relation.volume39
dc.type.versionacceptedVersion
dc.rights.copyright© 2015 the Authors. Ecography © 2015 Nordic Society Oikos. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.subject.ysolajiutuminen
dc.subject.ysolämpötila
jyx.subject.urihttp://www.yso.fi/onto/yso/p15045
jyx.subject.urihttp://www.yso.fi/onto/yso/p2100
dc.relation.doi10.1111/ecog.01948
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot