The effect of iron on the biodegradation of natural dissolved organic matter
Xiao, Y., Hoikkala, L., Kasurinen, V., Tiirola, M., Kortelainen, P., & Vähätalo, A. (2016). The effect of iron on the biodegradation of natural dissolved organic matter. Journal of Geophysical Research G: Biogeosciences, 121(10), 2544-2561. https://doi.org/10.1002/2016JG003394
Published in
Journal of Geophysical Research G: BiogeosciencesAuthors
Date
2016Copyright
© 2016 American Geophysical Union. This is a final draft version of an article whose final and definitive form has been published by Wiley. Published in this repository with the kind permission of the publisher.
Iron (Fe) may alter the biodegradation of dissolved organic matter (DOM), by interacting with DOM, phosphorus (P), and microbes. We isolated DOM and a bacterial community from boreal lake water and examined bacterial growth on DOM in laboratory experiments. Fe was introduced either together with DOM (DOM-Fe) or into bacterial suspension, which led to the formation of insoluble Fe precipitates on bacterial surfaces (Fe coating). In the latter case, the density of planktonic bacteria was an order of magnitude lower than that in the corresponding treatment without introduced Fe. The association of Fe with DOM decreased bacterial growth, respiration, and growth efficiency compared with DOM alone at the ambient concentration of dissolved P (0.16 µmol L−1), indicating that DOM-associated Fe limited the bioavailability of P. Under a high concentration (21 µmol L−1) of P, bacterial biomass and respiration were similar or several times higher in the treatment where DOM was associated with Fe than in a corresponding treatment without Fe. Based on the next generation sequencing of 16S rRNA genes, Caulobacter dominated bacterial communities grown on DOM-Fe. This study demonstrated that association of Fe with a bacterial surface or P reduces bacterial growth and the consumption of DOM. In contrast, DOM-Fe is bioavailable and bound Fe can even stimulate bacterial growth on DOM when P is not limiting.
...
Publisher
Wiley-Blackwell Publishing, Inc.ISSN Search the Publication Forum
2169-8953Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26293696
Metadata
Show full item recordCollections
Related funder(s)
European CommissionFunding program(s)
FP7 (EU's 7th Framework Programme)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
This work was funded by the Finnish Cultural Foundation (103757‐47394; Y.X.), Kone Foundation (35‐3243; A.V.), Academy of Finland grant 260797 (M.T.), and by the European Research Council (ERC) Consolidator grant 615146 (M.T.). We thank Timo Sara‐Aho for the measurement of water Fe concentrations and Sukithar Kochappi Rajan for the help in bioinformatics. We also thank Rolf D. Vogt (University of Oslo) and Schmitt‐Kopplin Philippe (German Research Center for Environmental Health) for providing the carboxyl and hydroxyl group data from Lake Valkea‐Kotinen. The data used are presented in the figures, tables, and supporting information which are available from the corresponding author upon request (yihuaxiao2010@gmail.com). The sequences have been added to the European Nucleotide Archive (ENA) under submission number PRJEB8364. ...Related items
Showing items with similar title or keywords.
-
Superoxide-driven autocatalytic dark production of hydroxyl radicals in the presence of complexes of natural dissolved organic matter and iron
Xiao, Yihua; Carena, Luca; Näsi, Marja-Terttu; Vähätalo, Anssi V. (Elsevier, 2020)We introduced superoxide as potassium superoxide (KO2) to artificial lake water containing dissolved organic matter (DOM) without or with introduced ferric iron complexes (DOM-Fe), and monitored the production rate of ... -
Reproduction, growth and oxidative stress in earthworm Eisenia andrei exposed to conventional and biodegradable mulching film microplastics
Forsell, Venla; Saartama, Vili; Turja, Raisa; Haimi, Jari; Selonen, Salla (Elsevier, 2024)Plastic contamination in agricultural soils has become increasingly evident. Plastic mulching films are widely used in agricultural practices. However, the increased use of biodegradable plastics has, to some extent, ... -
Step-by-step analysis of drinking water treatment trains using size-exclusion chromatography to fingerprint and track protein-like and humic/fulvic-like fractions of dissolved organic matter
Ignatev, Alexey; Tuhkanen, Tuula (Royal Society of Chemistry, 2019)This paper provides a glimpse into the removal of dissolved organic matter (DOM) during conventional drinking water treatment and evaluates the potential of high-performance size-exclusion chromatography (HPSEC) as a ... -
Coupling of iron and dissolved organic matter in lakes–selective retention of different size fractions
Riise, Gunnhild; Haaland, Ståle Leif; Xiao, Yihua (Springer, 2023)Increasing concentration of iron (Fe) is observed in many boreal lakes, such as for the present study in Oslo Østmark, SE-Norway (1983–2018). As Fe-regulating processes are complex and dynamic, the link between mobilizing ... -
Assessing and predicting the influence of chromophoric dissolved organic matter on light absorption by phytoplankton in boreal lakes
Ahonen, Salla A.; Vuorio, Kristiina M.; Jones, Roger I.; Hämäläinen, Heikki; Rantamo, Krista; Tiirola, Marja; Vähätalo, Anssi V. (John Wiley & Sons, 2024)Many boreal lakes are colored brown due to strong light absorption by chromophoric dissolved organic matter (CDOM), which reduces light penetration into the water column. However, the influence of CDOM on the fraction of ...