Näytä suppeat kuvailutiedot

dc.contributor.authorPuttaraksa, Nitipon
dc.contributor.authorWhitlow, Harry J.
dc.contributor.authorNapari, Mari
dc.contributor.authorMeriläinen, Leena
dc.contributor.authorGilbert, Leona
dc.date.accessioned2016-12-14T09:48:44Z
dc.date.available2017-10-04T21:45:09Z
dc.date.issued2016
dc.identifier.citationPuttaraksa, N., Whitlow, H. J., Napari, M., Meriläinen, L., & Gilbert, L. (2016). Development of a microfluidic design for an automatic lab-on-chip operation. <i>Microfluidics and Nanofluidics</i>, <i>20</i>(142). <a href="https://doi.org/10.1007/s10404-016-1808-0" target="_blank">https://doi.org/10.1007/s10404-016-1808-0</a>
dc.identifier.otherCONVID_26248203
dc.identifier.otherTUTKAID_71359
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/52339
dc.description.abstractSimple and easy to use are the keys for developing lab-on-chip technology. Here, a new microfluidic circuit has been designed for an automatic lab-on-chip operation (ALOCO) device. This chip used capillary forces for controlled and precise manipulation of liquids, which were loaded in sequence from different flowing directions towards the analysis area. Using the ALOCO design, a non-expert user is able to operate the chip by pipetting liquids into suitable inlet reservoirs. To test this design, microfluidic devices were fabricated using the programmable proximity aperture lithography technique. The operation of the ALOCO chip was characterized from the flow of red-, blue- and un-dyed deionized water. Experimental result indicated that red water, which filled first the analysis area, was substituted entirely with blue water. Controlled sequential flows of these water in the ALOCO device are demonstrated in this paper.
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesMicrofluidics and Nanofluidics
dc.subject.othercapillary flow
dc.subject.otherlab-on-chip
dc.subject.otherMeV ion beam lithography
dc.titleDevelopment of a microfluidic design for an automatic lab-on-chip operation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201612085001
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2016-12-08T16:15:06Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1613-4982
dc.relation.numberinseries142
dc.relation.volume20
dc.type.versionacceptedVersion
dc.rights.copyright© Springer-Verlag Berlin Heidelberg 2016. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
dc.rights.accesslevelopenAccessfi
dc.subject.ysomikrofluidistiikka
jyx.subject.urihttp://www.yso.fi/onto/yso/p38414
dc.relation.doi10.1007/s10404-016-1808-0
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot