Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n
Lahtinen, T., Hulkko, E., Sokołowska, K., Tero, T.-R., Saarnio, V., Lindgren, J., Pettersson, M., Häkkinen, H., & Lehtovaara, L. (2016). Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n. Nanoscale, 8(44), 18665-18674. https://doi.org/10.1039/C6NR05267C
Julkaistu sarjassa
NanoscaleTekijät
Päivämäärä
2016Oppiaine
Fysikaalinen kemiaOrgaaninen kemiaNanoscience CenterPhysical ChemistryOrganic ChemistryNanoscience CenterTekijänoikeudet
© The Royal Society of Chemistry 2016. This is a final draft version of an article whose final and definitive form has been published by RSC. Published in this repository with the kind permission of the publisher.
2016:1 | 2017:8 | 2018:47 | 2019:112 | 2020:96 | 2021:174 | 2022:68 | 2023:162 | 2024:91 | 2025:7
We present the synthesis, separation, and characterization of covalently-bound multimers of para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters. The multimers were synthesized by performing a ligand-exchange reaction of a pre-characterized Au102(p-MBA)44 nanocluster with biphenyl-4,4′-dithiol (BPDT). The reaction products were separated using gel electrophoresis yielding several distinct bands. The bands were analyzed by transmission electron microscopy (TEM) revealing monomer, dimer, and trimer fractions of the nanocluster. TEM analysis of dimers in combination with molecular dynamics simulations suggest that the nanoclusters are covalently bound via a disulfide bridge between BPDT molecules. The linking chemistry is not specific to Au102(p-MBA)44. The same approach yields multimers also for a larger monodisperse p-MBA-protected cluster of approximately 250 gold atoms, Au∼250(p-MBA)n. While the Au102(p-MBA)44 is not plasmonic, the Au∼250(p-MBA)n nanocluster supports localized surface plasmon resonance (LSPR) at 530 nm. Multimers of the Au∼250(p-MBA)n exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized LSPR modes. Well-defined structures and relatively small sizes make these systems excellent candidates for connecting ab initio theoretical studies and experimental quantum plasmonics. Moreover, our work opens new possibilities in the controlled synthesis of advanced monodisperse nanocluster superstructures.
...
Julkaisija
Royal Society of Chemistry Publishing; National Center for Nanoscience and TechnologyISSN Hae Julkaisufoorumista
2040-3364Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26234215
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkija, SALisätietoja rahoituksesta
This work was financially supported by the Academy of Finland via projects 269402 and 273499 (L. L.), 265502 (E. H.), and 266492 (H. H.), the computations were made at the NSC and at CSC – the Finnish IT Center for Science in Espoo. We acknowledge Prof. T. Tsukuda, Assoc. Prof. K. Koyasu, an Mr K. Hirata for resources and support to measure the mass spectrum of Au102( p-MBA)44 in the University of Tokyo, during a visit (T.-R. T.) supported by the University of Jyväskylä. We acknowledge Drs A. Johansson, G. Groenhof, P. Papponen, and Ms E. Pohjolainen for technical help and Drs X. Chen, J. Koivisto, S. Malola, and K. Salorinne for fruitful discussions. ...Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
NHC-Stabilized Au10 Nanoclusters and Their Conversion to Au25 Nanoclusters
Lummis, Paul A.; Osten, Kimberly M.; Levchenko, Tetyana I.; Sabooni Asre Hazer, Maryam; Malola, Sami; Owens-Baird, Bryan; Veinot, Alex J.; Albright, Emily L.; Schatte, Gabriele; Takano, Shinjiro; Kovnir, Kirill; Stamplecoskie, Kevin G.; Tsukuda, Tatsuya; Häkkinen, Hannu; Nambo, Masakazu; Crudden, Cathleen M. (American Chemical Society (ACS), 2022)Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC−Au−X complexes (X = Cl, Br, I). The significant effect of the ... -
Machine learning approach to atomic simulations of protected gold nanoclusters
Pihlajamäki, Antti (Jyväskylän yliopisto, 2022)In the nanometer lengthscale, the boundaries between physics, chemistry and biology disappear and all phenomena are reduced to the level of atomic interactions. Technological advancement has provided means to measure what ... -
Study of Water-Soluble p-MBA-Protected Gold Nanoclusters and Their Superstructures
Sokołowska, Karolina (Jyväskylän yliopisto, 2019)The development of gold nanoclusters has made remarkable progress enriching the research field of nanomaterial science. The breakthroughs in synthetic chemistry enable the preparation of functional materials using gold ... -
Spectroscopic signatures as a probe of structure and dynamics in condensed-phase systems : studies of iodine and gold ranging from isolated molecules to nanoclusters
Hulkko, Eero (2012)This thesis focuses on spectroscopic studies of several different iodine- and gold-containing molecules, complexes and nanoscopic clusters. The systems have been studied in the condensed phase with a wide range of experimental ... -
Analysis and Applications of Electronic Structure in Gold and Silver Nanoclusters
Kaappa, Sami (Jyväskylän yliopisto, 2019)Gold and silver nanoclusters are understood as atomically precise particles that consist of a metal core of more than 2 atoms that are usually protected and stabilized by a monolayer of organic molecules; these molecules ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.