Näytä suppeat kuvailutiedot

dc.contributor.advisorParkkonen, Jouni
dc.contributor.authorKosonen, Antti
dc.date.accessioned2016-10-30T17:58:56Z
dc.date.available2016-10-30T17:58:56Z
dc.date.issued2016
dc.identifier.otheroai:jykdok.linneanet.fi:1579088
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/51720
dc.description.abstractDifferentiaalimuodot ovat oleellinen osa modernin matematiikan koneistoa. Niitä käytetään paitsi geometrian tutkimuksessa, myös teoreettisen fysiikan kentällä muun muassa elektrostatiikassa, mekaniikassa ja termodynamiikassa. Differentiaalimuodot elävät luonnollisesti sileillä monistoilla, jotka puolestaan esiintyvät kaikkialla, missä on tarve puhua siisteistä joukoista koordinaattien avulla. Tässä tutkielmassa tutustutaan differentiaalimuotojen perusteoriaan alkaen euklidisten avaruuksien alimonistoista. Tämän jälkeen määritellään monistojen tangentti- ja kotangenttiavaruudet, k-muotojen ulkoinen tulo, differentiaalimuotojen ulkoinen derivaatta sekä lopulta differentiaalimuodon integraali yli suunnistetun moniston. Tutkielman tärkeimpänä yksittäisenä tavoitteena on esittää ja todistaa Stokesin ja Cartanin lauseena tunnettu teoreema. Tämä tulos mahdollistaa differentiaali- ja integraalilaskennasta tuttujen Gaussin, Greenin ja Stokesin lauseiden esittämisen yhtenäisellä tavalla, samalla yleistäen niiden sanoman paitsi korkeampiin ulottuvuuksiin, myös euklidisia avaruuksia abstraktimpiin joukkoihin. Tutkielmassa käsitteitä ja konstruktioita pyritään tarkastelemaan unohtamatta niihin liittyvää geometriaa. Lisäksi työssä tarkastellaan edellä mainittuihin fysiikan aihepiireihin liittyviä esimerkkejä monistojen ja differentiaalimuotojen tarjoamassa kontekstissa. Kokonaisuutena työn on tarkoitus toimia johdatuksena näihin differentiaaligeometriaksi kutsutun matematiikan alan keskeisiin työkaluihin ja antaa välähdys siitä, mitä niillä voi tehdä. Nämä työkalut ovat välttämättömiä jatkettaessa aiheessa eteenpäin, lisättäessä monistoille edelleen rakenteita ja perehdyttäessä niihin syvällisemmin.fi
dc.format.extent1 verkkoaineisto (82 sivua)
dc.format.mimetypeapplication/pdf
dc.language.isofin
dc.rightsJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rightsThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.subject.otherdifferentiaalimuodot
dc.subject.othertangenttiavaruus
dc.subject.otherulkoinen tulo
dc.subject.otherulkoinen derivaatta
dc.subject.othermonistojen suunnistaminen
dc.subject.otherintegrointi
dc.subject.otherStokesin ja Cartanin lause
dc.subject.otherdifferentiaalimuotojen sovellukset
dc.titleDifferentiaalimuodot ja niiden integrointi euklidisten avaruuksien alimonistoilla
dc.identifier.urnURN:NBN:fi:jyu-201610304497
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.date.updated2016-10-30T17:58:57Z
dc.rights.accesslevelopenAccessfi
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysomonistot
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot