Towards Automatic Testing of Reference Point Based Interactive Methods

Abstract
In order to understand strengths and weaknesses of optimization algorithms, it is important to have access to different types of test problems, well defined performance indicators and analysis tools. Such tools are widely available for testing evolutionary multiobjective optimization algorithms. To our knowledge, there do not exist tools for analyzing the performance of interactive multiobjective optimization methods based on the reference point approach to communicating preference information. The main barrier to such tools is the involvement of human decision makers into interactive solution processes, which makes the performance of interactive methods dependent on the performance of humans using them. In this research, we aim towards a testing framework where the human decision maker is replaced with an artificial one and which allows to repetitively test interactive methods in a controlled environment.
Main Authors
Format
Conferences Conference paper
Published
2016
Series
Subjects
Publication in research information system
Publisher
Springer International Publishing
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201609304242Use this for linking
Parent publication ISBN
978-3-319-45822-9
Review status
Peer reviewed
ISSN
0302-9743
DOI
https://doi.org/10.1007/978-3-319-45823-6_45
Conference
International Conference on Parallel Problem Solving From Nature
Language
English
Published in
Lecture Notes in Computer Science
Is part of publication
Parallel Problem Solving from Nature – PPSN XIV : 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceedings
Citation
  • Ojalehto, V., Podkopaev, D., & Miettinen, K. (2016). Towards Automatic Testing of Reference Point Based Interactive Methods. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, & B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN XIV : 14th International Conference, Edinburgh, UK, September 17-21, 2016, Proceedings (pp. 483-492). Springer International Publishing. Lecture Notes in Computer Science, 9921. https://doi.org/10.1007/978-3-319-45823-6_45
License
Open Access
Copyright© Springer International Publishing AG. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.

Share