Interactive Nonlinear Multiobjective Optimization Methods
Miettinen, K., Hakanen, J., & Podkopaev, D. (2016). Interactive Nonlinear Multiobjective Optimization Methods. In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple Criteria Decision Analysis : State of the Art Surveys (2nd ed., pp. 931-980). Springer Science+Business Media. International Series in Operations Research and Management Science, 233. https://doi.org/10.1007/978-1-4939-3094-4_22
Julkaistu sarjassa
International Series in Operations Research and Management SciencePäivämäärä
2016Oppiaine
Ekologia ja evoluutiobiologiaTietotekniikkaEcology and Evolutionary BiologyMathematical Information TechnologyTekijänoikeudet
© Springer Science+Business Media New York. This is a final draft version of an article whose final and definitive form has been published by Springer. Published in this repository with the kind permission of the publisher.
2016:2 | 2017:83 | 2018:139 | 2019:132 | 2020:215 | 2021:211 | 2022:126 | 2023:154 | 2024:137 | 2025:13
An overview of interactive methods for solving nonlinear multiobjective
optimization problems is given. In interactive methods, the decision
maker progressively provides preference information so that the most
satisfactory Pareto optimal solution can be found for her or his. The
basic features of several methods are introduced and some theoretical
results are provided. In addition, references to modifications and applications
as well as to other methods are indicated. As the role of
the decision maker is very important in interactive methods, methods
presented are classified according to the type of preference information
that the decision maker is assumed to provide.
Julkaisija
Springer Science+Business MediaEmojulkaisun ISBN
978-1-4939-3093-7Kuuluu julkaisuun
Multiple Criteria Decision Analysis : State of the Art SurveysISSN Hae Julkaisufoorumista
0884-8289Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25573004
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
A New Hybrid Mutation Operator for Multiobjective Optimization with Differential Evolution
Sindhya, Karthik; Ruuska, Sauli; Haanpää, Tomi; Miettinen, Kaisa (Springer, 2011)Differential evolution has become one of the most widely used evolution- ary algorithms in multiobjective optimization. Its linear mutation operator is a sim- ple and powerful mechanism to generate trial vectors. However, ... -
Approximation method for computationally expensive nonconvex multiobjective optimization problems
Haanpää, Tomi (University of Jyväskylä, 2012) -
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2009)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ... -
Why Use Interactive Multi-Objective Optimization in Chemical Process Design?
Miettinen, Kaisa; Hakanen, Jussi (World Scientific, 2017)Problems in chemical engineering, like most real-world optimization problems, typically, have several conflicting performance criteria or objectives and they often are computationally demanding, which sets special requirements ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.