Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons
Abstract
Longitudinal studies typically suffer from incompleteness of data. Attrition is a major problem in studies of older persons since participants may die during the study or are too frail to participate in follow-up examinations. Attrition is typically related to an individual’s health; therefore, ignoring it may lead to too optimistic inferences, for example, about cognitive decline or changes in polypharmacy. The objective of this study is to compare the estimates of level and slope of change in 1) cognitive function and 2) number of drugs in use between the assumptions of ignorable and non-ignorable missingness. This study demonstrates the usefulness of latent variable modeling framework. The results suggest that when the missing data mechanism is not known, it is preferable to conduct analyses both under ignorable and non-ignorable missing data assumptions.
Main Authors
Format
Articles
Research article
Published
2015
Series
Subjects
Publication in research information system
Publisher
Dove Medical Press Ltd.
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201607053481Use this for linking
Review status
Peer reviewed
ISSN
1179-1349
DOI
https://doi.org/10.2147/CLEP.S72918
Language
English
Published in
Clinical Epidemiology
Citation
- Lavikainen, P., Leskinen, E., Hartikainen, S., Möttönen, J., Sulkava, R., & Korhonen, M. J. (2015). Impact of missing data mechanism on the estimate of change: a case study on cognitive function and polypharmacy among older persons. Clinical Epidemiology, 7, 169-180. https://doi.org/10.2147/CLEP.S72918
Copyright© the Authors, 2015. This work is published and licensed by Dove Medical Press Limited. The full terms of the license incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.