Luotettava laskennallinen menetelmä sytokromi P450 alatyypin 2A6 katalysoimien pienmolekyylien metaboliakohtien ennustukseen
Abstract
Sytokromi P450 (CYP) -entsyymit ovat pääasiallisia katalyyttejä ihmisen vaiheen 1 vierasainemetaboliassa. CYP-välitteisen metabolian ennustaminen on tärkeä osa kemikaalien ja erityisesti lääkeaineiden kehitystä, sillä metabolian seurauksena vierasaine voi muuttua keholle haitalliseksi yhdisteeksi, tai lääkeaine voi menettää terapeuttisen vaikutuksensa liian nopean metabolian vuoksi. Tämän tutkimuksen tavoite oli kehittää tarkka, nopea ja aiempaa luotettavampi menetelmä CYP alatyypin 2A6 katalysoimien pienmolekyylien metaboliakohtien ennustukseen. Tavoitteen saavuttamiseksi tutkimuksessa kehitettiin uusia rakenne- ja ligandipohjaisia lähestymistapoja yhdistäviä menetelmiä CYP2A6-substraattien metaboliakohtien ennustukseen. Kehitettyjä menetelmiä vertailtiin erilaisiin ligandi- ja rakennepohjaisiin menetelmiin. Luotettavin kehitetty yhdistelmämenetelmä ennustaa CYP2A6-substraatille yhden metaboliakohdan 77 % todennäköisyydellä, mikä on 5 ja 12 prosenttiyksikköä korkeampi kuin parhailla testatuilla ligandi- tai rakennepohjaisilla menetelmillä yksinään. Metaboliakohdan lisäksi menetelmä ennustaa substraatin aktiivisen konformaation CYP2A6:n sitoutumistaskussa. Kehitetty menetelmä on mahdollista laajentaa myös muille CYP-alatyypeille pienillä parametrien muutoksilla. Malli voi tarjota arvokasta tietoa CYP-välitteisen metabolian mekanismeista ja rakenteellisesta perustasta. Menetelmää voidaan käyttää yhdessä muiden laskennallisten tai kokeellisten mallien kanssa kemikaalien tai lääkeainekandidaattien rakenteen optimointiin metabolian kannalta toivotumpaan suuntaan.
Cytochrome P450 (CYP) enzymes are the main catalysts in human phase 1 metabolism of exogenous compounds such as drugs. Since metabolic reactions can result in toxic metabolites or poor bioavailability of drugs, prediction of CYP-mediated metabolism is an important field in drug and chemical development. The goal of this study was to develop an accurate and fast method with improved reliability for prediction of sites of metabolism of small molecules catalysed by CYP subtype 2A6. In order to achieve the goal, several new methods combining both ligand- and structure-based approaches were developed for prediction of sites of metabolism of CYP2A6 substrates. The new methods were compared to varying ligand- or structure-based methods. The most reliable one of the developed ligand- and structure-based methods predicts one site of metabolism for a CYP2A6 substrate with 77% probability, which is 5 and 12 percent units higher than with the best ligand- or structure-based methods alone. Not only does the new method predict the site of metabolism with considerable reliability, but also the active conformation of a substrate in the binding site of CYP2A6. With subtype-specific parametrization, the method is also expandable to other subtypes of CYP enzymes. The method may provide valuable information about the mechanisms and structural basis of CYP-mediated metabolism. The method can be used in combination with other computational or experimental approaches to optimize structures of environmental compounds or drug candidates towards more desirable metabolic profiles.
Cytochrome P450 (CYP) enzymes are the main catalysts in human phase 1 metabolism of exogenous compounds such as drugs. Since metabolic reactions can result in toxic metabolites or poor bioavailability of drugs, prediction of CYP-mediated metabolism is an important field in drug and chemical development. The goal of this study was to develop an accurate and fast method with improved reliability for prediction of sites of metabolism of small molecules catalysed by CYP subtype 2A6. In order to achieve the goal, several new methods combining both ligand- and structure-based approaches were developed for prediction of sites of metabolism of CYP2A6 substrates. The new methods were compared to varying ligand- or structure-based methods. The most reliable one of the developed ligand- and structure-based methods predicts one site of metabolism for a CYP2A6 substrate with 77% probability, which is 5 and 12 percent units higher than with the best ligand- or structure-based methods alone. Not only does the new method predict the site of metabolism with considerable reliability, but also the active conformation of a substrate in the binding site of CYP2A6. With subtype-specific parametrization, the method is also expandable to other subtypes of CYP enzymes. The method may provide valuable information about the mechanisms and structural basis of CYP-mediated metabolism. The method can be used in combination with other computational or experimental approaches to optimize structures of environmental compounds or drug candidates towards more desirable metabolic profiles.
Main Author
Format
Theses
Master thesis
Published
2016
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201606203212Use this for linking
Language
Finnish
The record contains restricted files. You can request a copy of this thesis here.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
The material is available for reading at the archive workstation of the University of Jyväskylä Library.
This material has a restricted access due to copyright reasons. It can be read at the workstation at Jyväskylä University Library reserved for the use of archival materials: https://kirjasto.jyu.fi/en/workspaces/facilities.