Cross-Domain Recommendations with Overlapping Items
Kotkov, D., Wang, S., & Veijalainen, J. (2016). Cross-Domain Recommendations with Overlapping Items. In T. A. Majchrzak, P. Traverso, V. Monfort, & K.-H. Krempels (Eds.), WEBIST 2016 : Proceedings of the 12th International conference on web information systems and technologies. Volume 2 (pp. 131-138). SCITEPRESS. Journal of nutrition health and aging. https://doi.org/10.5220/0005851301310138
Julkaistu sarjassa
Journal of nutrition health and agingPäivämäärä
2016Oppiaine
OhjelmistotuotantoTekijänoikeudet
© INSTICC, 2016. This is an author's final draft version of an article whose final and definitive form has been published in the WEBIST Proceedings. Published by SCITEPRESS.
In recent years, there has been an increasing interest in cross-domain recommender systems. However, most
existing works focus on the situation when only users or users and items overlap in different domains. In
this paper, we investigate whether the source domain can boost the recommendation performance in the target
domain when only items overlap. Due to the lack of publicly available datasets, we collect a dataset from
two domains related to music, involving both the users’ rating scores and the description of the items. We
then conduct experiments using collaborative filtering and content-based filtering approaches for validation
purpose. According to our experimental results, the source domain can improve the recommendation performance
in the target domain when only items overlap. However, the improvement decreases with the growth
of non-overlapping items in different domains.
Julkaisija
SCITEPRESSEmojulkaisun ISBN
978-989-758-186-1Konferenssi
International conference on web information systems and technologiesKuuluu julkaisuun
WEBIST 2016 : Proceedings of the 12th International conference on web information systems and technologies. Volume 2ISSN Hae Julkaisufoorumista
1279-7707Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25702970
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The research at the University of Jyvaskylä was performed in the MineSocMed project, partially supported by the Academy of Finland, grant #268078.Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Improving Serendipity and Accuracy in Cross-Domain Recommender Systems
Kotkov, Denis; Wang, Shuaiqiang; Veijalainen, Jari (Springer International Publishing AG, 2017)Cross-domain recommender systems use information from source domains to improve recommendations in a target domain, where the term domain refers to a set of items that share attributes and/or user ratings. Most works ... -
Comparing ranking-based collaborative filtering algorithms to a rating-based alternative in recommender systems context
Koskela, Pentti (2017)Suuri sisältövalikoima eri internet palveluissa, kuten verkkokaupoissa, voi aiheuttaa liian suurta informaatiomäärää, mikä heikentää asiakaskokemusta. Suosittelujärjestelmät ovat teknologioita, jotka tukevat asiakkaan ... -
Listwise Recommendation Approach with Non-negative Matrix Factorization
Pandey, Gaurav; Wang, Shuaiqiang (Springer, 2018)Matrix factorization (MF) is one of the most effective categories of recommendation algorithms, which makes predictions based on the user-item rating matrix. Nowadays many studies reveal that the ultimate goal of recommendations ... -
Content-Based Approach in Exploring the Cognitive Structure of Values
Maksimainen, Johanna (Canadian Center of Science and Education, 2012)This article discusses the content-based approach in examination of values. In the content-based approach, human thinking in different contexts is set at the focal point, and attention is devoted to those cognitive processes ... -
Aspects of values in human-technology interaction design : a content-based view to values
Maksimainen, Johanna (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.