The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes

Abstract
Electronic structure of the XeOF2 molecule and its two complexes with HX (X= F, Cl, Br, I) molecules have been studied in the gas phase using quantum chemical topology methods: topological analysis of electron localization function (ELF), electron density, ρ(r), reduced gradient of electron density |RDG(r)| in real space, and symmetry adapted perturbation theory (SAPT) in the Hilbert space. The wave function has been approximated by the MP2 and DFT methods, using APF-D, B3LYP, M062X, and B2PLYP functionals, with the dispersion correction as proposed by Grimme (GD3). For the Xe-F and Xe=O bonds in the isolated XeOF2 molecule, the bonding ELF-localization basins have not been observed. According to the ELF results, these interactions are not of covalent nature with shared electron density. There are two stable F2OXe…HF complexes. The first one is stabilized by the F-H…F and Xe…F interactions (type I) and the second by the F-H…O hydrogen bond (type II). The SAPT analysis confirms the electrostatic term, Eelst (1) and the induction energy, Eind (2) to be the major contributors to stabilizing both types of complexes.
Main Authors
Format
Articles Research article
Published
2016
Series
Subjects
Publication in research information system
Publisher
Springer; Friedrich-Alexander-Universitaet Erlangen-Nuernberg
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201605062441Use this for linking
Review status
Peer reviewed
ISSN
1610-2940
DOI
https://doi.org/10.1007/s00894-016-2970-8
Language
English
Published in
Journal of Molecular Modeling
Citation
  • Makarewicz, E., Lundell, J., Gordon, A. J., & Berski, S. (2016). The nature of inter- and intramolecular interactions in F2OXe…HX (X= F, Cl, Br, I) complexes. Journal of Molecular Modeling, 22, Article 119. https://doi.org/10.1007/s00894-016-2970-8
License
CC BY 4.0Open Access
Copyright© The Author(s) 2016. This article is published with open access at Springerlink.com and distributed under the terms of the Creative Commons Attribution 4.0 International License

Share