Pintojen perusryhmistä

Abstract
Tässä tutkielmassa osoitetaan ennestään tunnettu pintoihin liittyvä tulos, jonka mukaan epäkompaktin pinnan perusryhmä on vapaa. Todistus pohjautuu tietoon siitä, että jokaisella pinnalla on olemassa niin sanottu kolmiointi. Pinnan kolmiointia hyödyntäen pinta tyhjennetään sopivilla sisäkkäisillä kompakteilla reunallisilla pinnoilla siten, että pinnan perus ryhmä saadaan näiden kompaktien reunallisten pintojen sisäkkäisten pe rusryhmien yhdisteenä. Kompakti reunallinen pinta osoitetaan homotopia ekvivalentiksi graafin kanssa deformaatioretraktoimalla reunallinen pinta graafiksi reunallisen pinnan kolmiointia hyödyntäen. Koska homotopiaekvi valenttien avaruuksien perusryhmät ovat isomorfiset, saadaan kompaktin reunallisen pinnan perusryhmä osoitettua vapaaksi osoittamalla, että graafin perusryhmä on vapaa ryhmä. Graafin perusryhmä osoitetaan vapaaksi ryhmäksi käyttäen tietoa niin sanotun maksimaalisen puun olemassaolosta. Todistuksessa käytetään lisäksi Van Kampenin teoreemaa, joka myös todistetaan. Tutkielman tulos sanoo, että esimerkiksi poistamalla kompaktilta pinnalta topologinen Cantorin joukko saadaan pinta, jonka perusryhmä on vapaa, mikä itsessään ei ole intuitiivisesti selvää.
Main Author
Format
Theses Master thesis
Published
2015
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201601151117Käytä tätä linkitykseen.
Language
Finnish
License
In CopyrightOpen Access

Share