dc.contributor.author | Reinikainen, Jaakko | |
dc.date.accessioned | 2015-11-27T06:35:29Z | |
dc.date.available | 2015-11-27T06:35:29Z | |
dc.date.issued | 2015 | |
dc.identifier.isbn | 978-951-39-6429-0 | |
dc.identifier.other | oai:jykdok.linneanet.fi:1504703 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/47847 | |
dc.description.abstract | Epidemiological studies can often be designed in several ways, some of which may be
more optimal than others. Possible designs may differ in the required resources or the
ability to provide reliable answers to the questions under study. In addition, once the
data are collected, the selected modeling approach may affect how efficiently the data
are utilized.
The purpose of this dissertation is to investigate efficient designs and analysis meth
ods in follow-up studies with longitudinal measurements. A key question is how to select
optimally a subcohort for a new longitudinal covariate measurement if we cannot afford
to measure the entire cohort. Another key question we consider is how to determine the
reasonable number of longitudinal measurements. Different ways to utilize longitudinal
covariate measurements in modeling cardiovascular disease (CVD) mortality are also
studied.
Follow-up data are modeled using parametric or semiparametric proportional haz
ards models. Subcohort selections are carried out using optimality criteria initially
developed for optimal experimental design. Measures of model discrimination are ap
plied to plan the number of longitudinal measurements. The topics are studied using
simulations and the East–West data, which are Finnish part of an international follow-
up study in the field of cardiovascular epidemiology, the Seven Countries Study.
This work demonstrates that the cost-efficiency of follow-up designs can be improved
by careful planning. The proposed method for selecting optimal subcohorts is shown to
outperform simple random sampling and it is demonstrated how the number of longi
tudinal measurements can be determined using simulated data and data from previous
similar studies. The results also indicate that individual-level changes and cumulative
averages of classical risk factors are good predictors of CVD mortality. | |
dc.format.extent | 1 verkkoaineisto (45 sivua) | |
dc.language.iso | eng | |
dc.publisher | University of Jyväskylä | |
dc.relation.ispartofseries | Report / University of Jyväskylä. Department of Mathematics and Statistics | |
dc.relation.isversionof | Julkaistu myös painettuna. | |
dc.rights | In Copyright | |
dc.subject.other | aikariippuvat kovariaatit | |
dc.subject.other | follow-up study | |
dc.subject.other | time-varying covariates | |
dc.subject.other | longitudinal measurements | |
dc.subject.other | optimal design | |
dc.subject.other | data collection | |
dc.subject.other | risk prediction | |
dc.subject.other | cardiovascular disease mortality | |
dc.title | Efficient design and modeling strategies for follow-up studies with time-varying covariates | |
dc.type | doctoral thesis | |
dc.identifier.urn | URN:ISBN:978-951-39-6429-0 | |
dc.type.dcmitype | Text | en |
dc.type.ontasot | Väitöskirja | fi |
dc.type.ontasot | Doctoral dissertation | en |
dc.contributor.tiedekunta | Faculty of Mathematics and Science | en |
dc.contributor.tiedekunta | Matemaattis-luonnontieteellinen tiedekunta | fi |
dc.contributor.yliopisto | University of Jyväskylä | en |
dc.contributor.yliopisto | Jyväskylän yliopisto | fi |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.subject.method | Seurantatutkimus | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.relation.issn | 1457-8905 | |
dc.relation.numberinseries | 153 | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | doctoralThesis | |
dc.subject.yso | epidemiologia | |
dc.subject.yso | tutkimusmenetelmät | |
dc.subject.yso | kustannustehokkuus | |
dc.subject.yso | seurantatutkimus | |
dc.subject.yso | pitkittäistutkimus | |
dc.subject.yso | kohorttitutkimus | |
dc.subject.yso | tutkimusaineisto | |
dc.subject.yso | data | |
dc.subject.yso | analyysimenetelmät | |
dc.subject.yso | optimaalisuus | |
dc.subject.yso | simulointi | |
dc.subject.yso | terveysriskit | |
dc.subject.yso | ennusteet | |
dc.subject.yso | sydän- ja verisuonitaudit | |
dc.subject.yso | kuolleisuus | |
dc.rights.url | https://rightsstatements.org/page/InC/1.0/ | |