One-step large-scale deposition of salt-free DNA origami nanostructures
Linko, V., Shen, B., Tapio, K., Toppari, J., Kostiainen, M. A., & Tuukkanen, S. (2015). One-step large-scale deposition of salt-free DNA origami nanostructures. Scientific Reports, 5, Article 15634. https://doi.org/10.1038/srep15634
Julkaistu sarjassa
Scientific ReportsTekijät
Päivämäärä
2015Tekijänoikeudet
© 2015 the Authors. Published by Nature Publishing Group. This is an open access article licensed under a Creative Commons Attribution 4.0 International License.
DNA origami nanostructures have tremendous potential to serve as versatile platforms in selfassembly
-based nanofabrication and in highly parallel nanoscale patterning. However, uniform
deposition and reliable anchoring of DNA nanostructures often requires specific conditions, such as
pre-treatment of the chosen substrate or a fine-tuned salt concentration for the deposition buffer.
In addition, currently available deposition techniques are suitable merely for small scales. In this
article, we exploit a spray-coating technique in order to resolve the aforementioned issues in the
deposition of different 2D and 3D DNA origami nanostructures. We show that purified DNA origamis
can be controllably deposited on silicon and glass substrates by the proposed method. The results are
verified using either atomic force microscopy or fluorescence microscopy depending on the shape of
the DNA origami. DNA origamis are successfully deposited onto untreated substrates with surface
coverage of about 4 objects/mm2
. Further, the DNA nanostructures maintain their shape even if the
salt residues are removed from the DNA origami fabrication buffer after the folding procedure. We
believe that the presented one-step spray-coating method will find use in various fields of material
sciences, especially in the development of DNA biochips and in the fabrication of metamaterials and
plasmonic devices through DNA metallisation.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2045-2322Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/25271318
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Ellei muuten mainita, aineiston lisenssi on © 2015 the Authors. Published by Nature Publishing Group. This is an open access article licensed under a Creative Commons Attribution 4.0 International License.
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nanodevices by DNA based gold nanostructures
Tapio, Kosti (University of Jyväskylä, 2017)In this thesis DNA based structures were utilized to create gold nanostructures for nanosensing and nanoelectronic applications. In the past, both of these fields have been dominated by the conventional lithography methods, ... -
Metallic Nanostructures Based on DNA Nanoshapes
Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jussi (MDPI AG, 2016)Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, ... -
Structural stability of DNA origami nanostructures under application-specific conditions
Ramakrishnan, Saminathan; Ijäs, Heini; Linko, Veikko; Keller, Adrian (Research Network of Computational and Structural Biotechnology, 2018)With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides ... -
Large-Scale Formation of DNA Origami Lattices on Silicon
Tapio, Kosti; Kielar, Charlotte; Parikka, Johannes M.; Keller, Adrian; Järvinen, Heini; Fahmy, Karim; Toppari, J. Jussi (American Chemical Society (ACS), 2023)In recent years, hierarchical nanostructures have found applications in fields like diagnostics, medicine, nano-optics, and nanoelectronics, especially in challenging applications like the creation of metasurfaces with ... -
Applications of DNA self-assembled structures in nanoelectronics and plasmonics
Shen, Boxuan (University of Jyväskylä, 2018)In this thesis, the potential applications of DNA self-assembled structures were explored in both nanoelectronics and plasmonics. The works can be divided into two parts: electrical characterization of unmodified multilayered ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.