dc.contributor.author | Brander, Tommi | |
dc.date.accessioned | 2015-10-28T09:15:44Z | |
dc.date.available | 2015-10-28T09:15:44Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Brander, T. (2016). Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary. <i>Proceedings of the American Mathematical Society</i>, <i>144</i>(1), 177-189. <a href="https://doi.org/10.1090/proc/12681" target="_blank">https://doi.org/10.1090/proc/12681</a> | |
dc.identifier.other | CONVID_25251789 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/47482 | |
dc.description.abstract | We recover the gradient of a scalar conductivity defined on a smooth bounded open set in Rd from the Dirichlet to Neumann map arising from the p-Laplace equation. For any boundary point we recover the gradient using Dirichlet data supported on an arbitrarily small neighbourhood of the boundary point. We use a Rellich-type identity in the proof. Our results are new when p 6 = 2. In the p = 2 case boundary determination plays a role in several methods for recovering the conductivity in the interior. | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Proceedings of the American Mathematical Society | |
dc.subject.other | Calderón problem | |
dc.subject.other | p-Laplacian | |
dc.title | Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201510273516 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2015-10-27T16:15:04Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 177-189 | |
dc.relation.issn | 0002-9939 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 144 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2015 American Mathematical Society. This is a final draft version of an article whose final and definitive form has been published by AMC. Published in this repository with the kind permission of the publisher. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.doi | 10.1090/proc/12681 | |
dc.type.okm | A1 | |